首页 公文范文 集成电路制造与工艺

集成电路制造与工艺汇编(三篇)

发布时间:2024-01-14 15:51:13

绪论:一篇引人入胜的集成电路制造与工艺,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

集成电路制造与工艺

篇1

一、优化理论教学方法,丰富教学手段,突出课程特点

集成电路版图作为一门电子科学与技术专业重要的专业课程,教学内容与电子技术(模拟电路和数字电路)、半导体器件、集成电路设计基础等先修课程中的电路理论、器件基础和工艺原理等理论知识紧密联系,同时版图设计具有很强的实践特点。因此,必须从本专业学生的实际特点和整个专业课程布局出发,注重课程与其他课程承前启后,有机融合,摸索出一套实用有效的教学方法。在理论授课过程中从集成电路的设计流程入手,在CMOS集成电路和双极集成电路基本工艺进行概述的基础上,从版图基本单元到电路再到芯片循序渐进地讲授集成电路版图结构、设计原理和方法,做到与上游知识点的融会贯通。

集成电路的规模已发展到片上系统(SOC)阶段,教科书的更新速度远远落后于集成电路技术的发展速度。集成电路工艺线宽达到了纳米量级,对于集成电路版图设计在当前工艺条件下出现的新问题和新规则,通过查阅最新的文献资料,向学生介绍版图设计前沿技术与发展趋势,开拓学生视野,提升学习热情。在课堂教学中尽量减少冗长的公式和繁复的理论推导,将理论讲解和工程实践相结合,通过工程案例使学生了解版图设计是科学、技术和经验的有机结合。比如,在有关天线效应的教学过程中针对一款采用中芯国际(SMIC)0.18um 1p6m工艺的雷达信号处理SOC 芯片,结合跳线法和反偏二极管的天线效应消除方法,详细阐述版图设计中完全修正天线规则违例的关键步骤,极大地激发了学生的学习兴趣,收到了较好的教学效果。

集成电路版图起着承接电路设计和芯片实现的重要作用。通过版图设计,可以将立体的电路转化为二维的平面几何图形,再通过工艺加工转化为基于半导体硅材料的立体结构[2]。集成电路版图设计是集成电路流程中的重要环节,与集成电路工艺密切相关。为了让学生获得直观、准确和清楚的认识,制作了形象生动、图文并茂的多媒体教学课件,将集成电路典型的设计流程、双极和CMOS集成电路工艺流程、芯片内部结构、版图的层次等内容以图片、Flash动画、视频等形式进行展示。

版图包含了集成电路尺寸、各层拓扑定义等器件相关的物理信息数据[3]。掩膜上的图形决定着芯片上器件或连接物理层的尺寸。因此版图上的几何图形尺寸与芯片上物理层的尺寸直接相关。而集成电路制造厂家根据版图数据来制造掩膜,对于同种工艺各个foundry厂商所提供的版图设计规则各不相同[4]。教学实践中注意将先进的典型芯片版图设计实例引入课堂,例如举出台湾积体电路制造公司(TSMC)的45nm CMOS工艺的数模转换器的芯片版图实例,让学生从当今业界实际制造芯片的角度学习和掌握版图设计的规则,同时切实感受到模拟版图和数字版图设计的艺术。

二、利用业界主流EDA工具,构建基于完整版图设计流程的实验体系

集成电路版图设计实验采用了Cadence公司的EDA工具进行版图设计。Cadence的EDA产品涵盖了电子设计的整个流程,包括系统级设计、功能验证、集成电路(IC)综合及布局布线、物理验证、PCB设计和硬件仿真建模模拟、混合信号及射频IC设计、全定制IC设计等。全球知名半导体与电子系统公司如AMD、NEC、三星、飞利浦均将Cadence软件作为其全球设计的标准。将业界主流的EDA设计软件引入实验教学环节,有利于学生毕业后很快适应岗位,尽快进入角色。

专业实验室配备了多台高性能Sun服务器、工作站以及60台供学生实验用的PC机。服务器中安装的Cadence 工具主要包括:Verilog HDL的仿真工具Verilog-X、电路图设计工具Composer、电路模拟工具Analog Artist、版图设计工具Virtuoso Layout Editing、版图验证工具Dracula 和Diva、自动布局布线工具Preview和Silicon Ensemble。

Cadence软件是按照库(Library)、单元(Cell)、和视图(View)的层次实现对文件的管理。库、单元和视图三者之间的关系为库文件是一组单元的集合,包含着各个单元的不同视图。库文件包括技术库和设计库两种,设计库是针对用户设立,不同的用户可以有不同的设计库。而技术库是针对工艺设立,不同特征尺寸的工艺、不同的芯片制造商的技术库不同。为了让学生在掌握主流EDA工具使用的同时对版图设计流程有准确、深入的理解,安排针对无锡上华公司0.6um两层多晶硅两层金属(Double Poly Double Metal)混合信号CMOS工艺的一系列实验让学生掌握包括从电路图的建立、版图建立与编辑、电学规则检查(ERC),设计规则检查(DRC)、到电路图-版图一致性检查(LVS)的完整的版图设计流程[5]。通过完整的基于设计流程的版图实验使学生能较好地掌握电路设计工具Composer、版图设计工具Virtuoso Layout Editor以及版图验证工具Dracula和Diva的使用,同时对版图设计的关键步骤形成清晰的认识。

以下以CMOS与非门为例,介绍基于一个完整的数字版图设计流程的教学实例。

篇2

一、引言

微电子技术与国家科技发展密切相关,是21世纪我国重点发展的技术方向。在新形势下,无论军用还是民用方面都对微电子方向人才有强烈需求。高校微电子专业是以培养能在微电子学领域内,从事半导体器件、集成电路设计、制造和相应的新产品、新技术、新工艺的研究和开发等方面工作的高级应用型科技人才为目标的。因此,要求学生不仅要具备坚实的理论基础,还需具备突出的专业能力和创新能力,满足行业的快速发展和社会需求。

目前我国微电子行业中,微电子工艺研究相对于器件和集成电路设计研究工作是滞后的,处于不平衡发展状态,为使行业发展更均衡,需要加强微电子工艺人才的培养。微电子工艺是微电子专业中非常重要的专业课,主要研究微电子器件与集成电路制造工艺原理与技术。微电子器件与集成电路尺寸都是在微米甚至纳米量级,导致在理论学习过程中,学生理解有一定的困难,因此需要通过开设微电子工艺实验课程加深和巩固知识内容,使学生更加直接地接触微电子行业核心技术,了解半导体器件、集成电路生产制造加工的技术方法,从而促进学生对微电子工艺等课程的学习。因此,微电子工艺实验教学可以有效地弥补理论教学的局限性和抽象性,促进学生对理论课的理解和提高学生的动手能力。

二、课程分析

微电子工艺课程要求掌握制造集成电路所涉及的外延、氧化、掺杂、光刻、刻蚀、化学气相淀积、物理气相淀积、金属化等技术的原理与方法,熟悉双极型和M0s集成电路的制造工艺流程,了解集成电路的新工艺和新技术。微电子技术的发展是遵循摩尔定律,快速发展变化的,虽然工程教育要求教学最新最前沿的技术,但微电子设备价格昂贵,运转与维护费用很高,任何高校都很难不断升级换代;而且集成电路制造技术的更新迭代主要是在掺杂技术、光刻技术、电极制造技术方面进行了技术改进,在其他方面还都是相似的,因此,在高校中单纯追求工艺先进的实验教学是不现实的。基于此,结合实际教学资源情况,建设主流、典型工艺技术的工艺实验线,并开展理论联系实践的实验教学是微电子工艺实验室建设的重点。通过实验使学生更牢固地掌握晶体管及简单Ic的整个工艺制造技术,学会测试晶体管重要参数,以及初步了解集成电路工艺制造过程。

黑龙江大学微电子工艺实验室已建立数十年,之前受到设备的限制,所开设的实验都是分立的,不能完全按工艺流程完成器件的制作,没有形成有机整体,学生缺乏对晶体管制作工艺流程的整体认识。经过不断发展和学校的大量投入,目前该实验室拥有一条微电子平面工艺线,主要的设备包括磁控溅射设备、电子束蒸发设备、CVD化学气相淀积系统、光刻机、离子刻蚀机、扩散炉、氧化炉、超声压焊机、烧结炉等。这些设备保证了微电子工艺实验能够按晶体管制作工艺流程顺序完成制作。同时实验室配备了测试环节所必须的显微镜、电阻率测试仪、探针测试台、半导体特性图示仪等检测仪器,通过实验能进一步加深学生对微电子工艺制造过程的了解。实践证明,以上实验内容对学生掌握知识和开拓视野起到十分重要的作用,效果显著。该实验室多年来一直开展本科生教学和本科生毕业设计、研究生毕业设计、各类创新实验项目等教学、科研工作。

三、实验教学的开展

为了达到理论实践相互支撑与关联,通过实验促进理论学习,笔者根据微电子专业特点,开展了微电子工艺实验的教学改革。在原有的微电子平面工艺实验的基础上,建立由实验内容的设置、多媒体工艺视频、实际操作的工艺实验、实验考核方法和参观学习五部分组成的教学方式,形成有效的实践教学,加强了学生对制造技术和工艺流程的整体的认识,培养了学生对半导体器件原理研究的兴趣,使学生对将来从事半导体工艺方面的研究充满信心。

(一)实验内容的设置

实验内容主要包括四部分:

1.教师提供给学生难易不同的器件结构(二极管、三极管、MOS管等),学生可以自主选择;

2.根据器件结构,计算机辅助软件设计器件制作的工艺流程;

3.通过实验室提供的仪器设备完成器件制作;

4.测试器件性能参数。

通过这样设置,既能掌握微电子工艺的基本理论,又能通过实验分析完善工艺参数,使学生完全参与其中。

(二)多媒体工艺视频

为了让学生对集成电路设计和微电子制造工艺有直观的认识。结合实际的实验教学过程,制作全程相关单项工艺技术、流程及设备操作视频演示资料,同时强调工艺制作过程中安全操作和注意事项,防止危险的发生。

(三)实际操作的工艺实验

工艺实验涵盖清洗、氧化、扩散、光刻、制版、蒸镀、烧结、压焊等主要工序,为学生亲自动手制作半导体器件和制造集成电路提供了一个完整的实验条件。学生根据所学的理论知识了解器件结构、确定工艺条件、按照流程完成器件的制作。保证每名学生都参与到器件制作过程中。同时每个单项工序时间和内容采取预约制,实现开放式实验教学。

(四)实验考核方法

在实验教学环节中,实验考核是重要的教学质量评价手段。实验着重对动手能力和综合分析问题的能力及创新能力进行考核。主要考核内容包括:

1.器件工艺设计:考核设计器件制作流程的合理性;

2.工艺实验:考核现场工艺操作是否规范,选用的工艺条件是否合理;

3.测试结果:考核制作器件的测试结果;

4.实验分析报告:考核分析问题和解决问题能力,并最终给出综合成绩。

(五)参观学习

篇3

1.1 什么是MPW服务

在集成电路开发阶段,为了检验开发是否成功,必须进行工程流片。通常流片时至少需要6~12片晶圆片,制造出的芯片达上千片,远远超出设计检验要求;一旦设计存在问题,就会造成芯片大量报废,而且一次流片费用也不是中小企业和研究单位所能承受的。多项目晶圆MPW(Multi-Project Wafer)就是将多个相同工艺的集成电路设计在同一个晶圆片上流片,流片后每个设计项目可获得数十个芯片样品,既能满足实验需要,所需实验费用也由参与MPW流片的所有项目分摊,大大降低了中小企业介入集成电路设计的门槛。

1.2 MPW的需求与背景

上世纪80年代后,集成电路加工技术飞速发展,集成电路设计成了IC产业的瓶颈,迫切要求集成电路设计跟上加工技术;随着集成电路应用的普及,集成知识越来越复杂,并向系统靠近,迫切要求系统设计人员参与集成电路设计;为了全面提升电子产品的品质与缩短开发周期,许多整机公司和研究机构纷纷从事集成电路设计。因此,大面积、多角度培养集成电路设计人才迫在眉睫,而集成电路设计的巨额费用成为重要制约因素。

实施MPW技术服务必须有强有力的服务机构、设计部门和IC生产线。

1.3 MPW服务机构的任务

① 建立IC设计与电路系统设计之间的简便接口,以便于系统设计人员能够直接使用各种先进的集成电路加工技术实现其设计构想,并以最快的速度转化成实际样品。

② 组织多项目流片,大幅度减少IC设计、加工费用。

③ 不断扩大服务范围:从提供设计环境、承担部分设计,到承担全部设计、样片生产,以帮助集成电路用户或开发方完成设计项目。

④ 帮助中小企业实现小批量集成电路的委托设计、生产任务。

⑤ 支持与促进学校集成电路的设计与人才培养。

1.4 MPW技术简介

(1)项目启动阶段

MPW组织者首先根据市场需要,确定每次流片的技术参数、IC工艺参数、电路类型、芯片尺寸等。设计时的工艺文件:工艺文件由MPW组织者向Foundry(代工厂)索取,然后再由设计单位向MPW组织者索取。提交工艺文件时,双方都要签署保密协议。

(2)IP核的使用

参加MPW的项目可使用组织者或Foundry提供的IP核,其中软核在设计时提供,硬核在数据汇总到MPW组织者或Foundry处理后再进行嵌入。

(3)设计验证

所有参加MPW的项目汇总到组织者后,由组织者负责对设计的再次验证。验证成功后,由MPW组织者将所有项目版图综合成最终版图交掩膜版制版厂,开始流片过程。

(4)流片收费

每个项目芯片价格按所占Block的大小而非芯片实际大小计算。流片完成后,MPW组织者向每个项目提供10~20片裸片。需封装、测试则另收费。

2 国外MPW公共技术平台与公共技术服务状况

(1)MPW服务机构创意

1980年,美国防部军用先进研究项目管理局(DARPA)建立了非赢利的MPW加工服务机构,即MOS电路设计的实现服务机构MOSIS(MOS Implementation System)服务机构,为其下属研究部门所设计的各种集成电路寻找一种费用低廉的样品制作途径。MPW服务机构与方式的思路应运而生。加工服务内容:从初期的晶圆加工到后续增加的封装、测试、芯片设计。

(2)MOSIS机构的发展

考虑到MPW服务的技术性,1981年MOSIS委托南加州大学管理。在IC产业剧烈的国际竞争环境下,培养集成电路设计人才迫在眉睫。1985年,美国国家科学基金会NSF支持MOSIS,并和DARPA达成协议,将MPW服务对象扩大到各大学的VLSI设计的教学活动;1986年以后在产业界的支持下,将MPW服务扩大到产业部门尤其是中小型IC设计企业;1995年以后,MOSIS开始为国外的大学、研究机构以及商业部门服务。服务收费:国内大学教学服务免费,公司服务收费,国外大学优惠条件收费,国外公司收费较国内公司要高。

(3)其它国家的MPW服务机构

法国:1981年建立了CMP(Circuit Multi Projects)服务机构,发展迅速,规模与MOSIS接近,对国外服务也十分热心。1981年至今,已为60个国家的400个研究机构和130家大学提供了服务,超过2500个课题参加了流片。1990年以前,CMP的服务对象主要是大学与研究所,1990年开始为中小企业提供小批量生产的MPW服务。由于小批量客户的不断增加,2001年的利润比2000年增加了30%。

欧盟:欧盟于1995年建立了有许多设计公司加盟的EUROPRACTICE的MPW服务机构,旨在向欧洲各公司提供先进的ASIC、多芯片模块(MCM)和SoC解决方案,以提高它们在全球市场的竞争地位。EUROPRACTICE采取了"一步到位解决方案"的服务方式,用户只要与任何一家加盟EUROPRACTICE的设计公司联系,就可以由该公司负责与CAD厂商、单元库公司、代工厂、封装公司和测试公司联系处理全部服务事项。

加拿大:1984年成立了政府与工业界支持的非赢利性MPW服务机构CMC(Canadian Microelectronics Corporation)联盟,是加拿大微电子战略联盟(Strategic Microelectronics Consortium)的一部分。目前,CMC的成员包括44所大学和25家企业。CMC的服务包括:提供设计方法和其它产品服务,提高成员的设计水平;提供先进的制造工艺,确保客户的设计质量;提供技术及工艺的培训。

日本:1996年依托东京大学建立了VLSI设计与教育中心VDEC(VLSI Design and Education Center),开展MPC(Multi-Project Chip)服务。VDEC的目标是不断提高日本高校VLSI设计课程教育水平和集成电路制造的支持力度。2001年,共有43所大学的99位教授或研究小组通过VDEC的服务,完成了335个芯片的设计与制造。VDEC与主要EDA供应商都签有协议,每个EDA工具都拥有500~1000个license;需要时,这些license都可向最终用户开放。VDEC还对外提供第三方IP的使用,同时,VDEC本身也在从事IP研究。

韩国:1995年,在韩国先进科学技术研究院(Korea Advanced Institute of Science and Technology)内建立了集成电路设计教育中心IDEC(IC Design Education Center)。

可以看出,世界各先进国家都认识到IC产业在未来世界经济发展中的重要地位,在IC加工技术发展到一定阶段后,抓住了IC产业飞速发展的关键;在IC应用层面上普及IC设计技术和大力降低IC设计、制造费用,并及时建立有效的MPW服务机构,使IC产业进入了飞速发展期。纵观各国MPW服务机构不尽相同,但都具有以下特点:

① 政府与产业界支持的非赢利机构;

② 开放性机构,主要为高等学校、研究机构、中小企业服务;

③ 提供先进的IC设计与制造技术,保证设计出的芯片具有先进性与商业价值;

④ 提供IC设计与制造技术的全程服务。

3 我国MPW现状

我国大陆地区从上世纪80年代后半期开始进入MPW加工服务,从早期利用国外的MPW加工服务机构到民间微电子设计、加工的相关企业、学校联合的MPW服务,到近期政府、企业介入后的MPW公共服务体系的建设,开始显露了较好的发展势头。

3.1 与国外MPW加工服务机构合作

1986年,北京华大与武汉邮科院合作利用德国的服务机构,免费进行了光纤二、三次群芯片组的样品制作,使武汉邮科院的通信产品得以更新换代。此后,上海交大、复旦、南京东南大学、北京大学、清华大学、哈尔滨工业大学都从国外的MPW加工服务中获益匪浅。东南大学利用美国MOSIS机构的MPW加工服务,采用0.25和0.35 ìm的模数混合电路工艺进行了射频和高速电路的实验流片。

在与国外MPW服务机构的合作方面,东南大学射频与光电子集成电路研究所取得显著成果。建所初期就与美国MOSIS、法国CMP建立合作关系。1998年以境外教育机构身份正式加入MOSIS,同年,利用MOSIS提供的台湾半导体公司的CMOS工艺设计规则、模型及设计资料开发了基于Cadence软件设计环境的高速、射频集成电路,完成了5批0.35ìm、3批0.25ìm CMOS工艺共40多个电路的设计与制造,取得了许多国内领先、世界先进水平成果。2000年东南大学射光所还与法国的CMP组织正式签订了合作协议。

为了推动大陆的MPW服务,射光所从2000年开始利用美国MOSIS机构为国内客户服务,建立了MPW服务网页,向公众及时流片时间及加入MPW的流程和手续。2001年,射光所通过MOSIS利用TSMC的0.35和0.25ìm CMOS工艺为清华大学、信息产业部第13所、南通工学院完成了3批10多个芯片的设计制造。目前,10多个高校、研究机构、企业成为射光所MPW成员。

3.2 高校、企业、研究机构合作实现MPW服务

90年代,上海复旦大学开始着手建立国内MPW加工服务机构;1995年,无锡上华微电子公司开始承担MPW加工服务,并于1996年组织了第一次MPW流片;1997年至1999年在上海市政府的支持下,连续组织了6次MPW流片,参加项目有82个;2000年受国家火炬计划、上海集成电路设计产业化基地、上海市科委及上海集成电路设计研究中心委托又组织了3次35个项目的MPW流片。清华大学与无锡上华合作,针对上华工艺,开发了0.6ìm单元库,开始了MPW加工服务,并将校内的工艺线用于MPW加工服务。近年来,在863 VLSI重大项目规划指引下,在上海、北京、深圳、杭州等地陆续成立了集成电路产业化基地,进一步推动了MPW加工服务的开展。清华大学从2000年开始,利用上华0.6ìm CMOS工艺为本校以及浙江大学、合肥工业大学组织了4次MPW流片,总共实现了106项设计;上海集成电路设计研究中心与复旦大学,于2001年利用上华1.0和0.6ìm CMOS工艺和TSMC的0.3ìm CMOS工艺,为产业界、教育界进行了8次MPW流片,实现了109个设计项目。

随着中国半导体工业飞速发展,将会在更多的先进工艺生产线为MPW提供加工服务,许多境外的半导体公司也在积极支持我国的MPW加工服务。随着上海、北京多条具有国际先进水平的深亚微米CMOS工艺线的建成,国家级的MPW计划会得到飞速发展。

3.3 台湾地区的MPW加工服务

1992年在台湾科学委员会的支持下,成立了集成电路设计和系统设计研究中心CIC。其目的是对大专院校的集成电路/系统设计提供MPW服务,对集成电路/系统设计人员进行培训,并推动产业界与学院的合作研究项目。到目前为止,CIC已为超过100家的台湾院校提供了MPW服务,总计有3909个IC项目流片成功,其中,76家大专院校有3423项,40多家研究所和产业界有486项。在EDA工具方面,有多家的IC/SYSTEM设计工具已运用在MPW的设计流程中。到目前为止,已有91家大专院校安装了14 100多个EDA工具的许可证,另外,0.6ìm 1P3M CMOS、0.35ìm1P4M CMOS、0.25 ìm1P5M CMOS和0.18ìm1P6M CMOS的标准单元库已开始使用。除了常规MPW服务,CIC还向大专院校提供培训:2001年有7000人次,每年还有2次为产业界提供的高级培训。

台湾积体电路制造股份公司(台积公司:TSMC)从1998年提供MPW服务,成为全球IC设计的重要伙伴。2000年以来台积公司提供了100多次MPW服务,并完成了1000个以上IC芯片项目的研制。目前,台积公司已分别与上海集成电路设计研究中心、北京大学微处理器研究开发中心合作,提供MPW服务。

4 我国大陆地区MPW服务基地的建设

由于大陆地区原有微电子研究机构的历史配置,在进入基于MPW服务方式后,这些研究机构先后都介入了IC设计的MPW服务领域,并开始建立相应的MPW服务基地。

4.1 上海复旦大学与集成电路设计研究中心(ICC)

上海复旦大学专用集成电路与系统国家重点实验室在上海市政府支持下,于1997年成立了"上海集成电路设计教育服务中心"。主要任务是IC设计人才培养和组织MPW服务。1997~1999年组织了6次MPW流片。2000~2001年上海市科委设立"上海多项目晶圆支援计划",把开展MPW列为国家集成电路设计上海产业化基地的重点工作。在市科委组织下,复旦大学专用集成电路与系统国家重点实验室与ICC实现强强联合,面向全国,于2000年组织了3次、2001年组织了5次MPW流片。ICC于2001年底正式与TSMC达成合作协议,开展0.35ìm MPW流片服务。2002年与中芯国际集成电路制造(上海)有限公司(SMIC)合作推出本土0.35ìm及以下工艺的MPW流片服务。从ICC设立的网站(icc.sh.cn) 可了解MPW最新动态和几乎所有的MPW服务信息。

4.2 南京东南大学射频与光电子集成电路研究所

1998年,南京东南大学射光所以境外教育机构的身份正式加入美国MOSIS,并签订有关协议,由此可获得多种工艺流片服务。2000年5月与法国的CMP签订了合作协议。1999年底受教育部委托,举办了"无生产线集成电路设计技术"高级研讨班。从2000年开始建立了MPW服务网页,通过网页向公众公布流片时间及加入MPW的流程和手续,目前,高速数字射频和光电芯片测试系统已开始运行,准备为全国超高速数字、射频和光电芯片研究提供技术支持,有许多高校、研究单位、公司已成为射光所MPW成员。

4.3 国家集成电路设计产业化(北京)基地MPW加工服务中心

在北京市政府的支持与直接参与下建立了"北京集成电路设计园有限责任公司"。正在建设中的国家集成电路设计产业化(北京)基地MPW加工服务中心由北京华兴微电子有限公司为承担单位,联合清华大学、北京大学共同建设。

友情链接