发布时间:2023-10-11 17:34:08
绪论:一篇引人入胜的物联通信技术,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。
doi:10.3969/j.issn.1006-1010.2016.12.017 中图分类号:TN929.5 文献标志码:A 文章编号:1006-1010(2016)12-0078-04
引用格式:赵小江,祝海云,徐福新. 低速移动物联网的移动通信技术发展和产业化方向[J]. 移动通信, 2016,40(12): 78-81.
1 引言
从手机和移动宽带衍生发展而来的M2M模块在行业应用信息化中得到大力应用,移动物联网成为一个新兴市场。战略无线业务咨询公司Northstream曾公布了它对2016年全球移动电信行业走势的预测:预计“物联网黄金时代”将拉开序幕。目前承载移动物联网的主要无线传输网络包括2G(2.5G)/3G/4G移动网络、Wi-Fi网络、ZigBee、蓝牙等,并且大约70%的移动物联网都是以低数据速率的低端通信模块为主。本文将主要探索低数据速率移动物联网的通信技术发展方向和产业化方向,并以车联网为例进行探讨。
2 车联网结构
截至2015年6月底,全国机动车保有量达2.71亿辆,电动自行车保有量也已突破2亿辆。汽车、摩托车、电动自行车已经成为各个阶层工作、生活中必备的交通工具,但被盗现象却时有发生,因此用户对车辆防盗、定位管理需求日益强烈。此外,一些快递物流、外勤服务、车队管理、汽车租赁管理等不仅需要车辆定位,而且使用轨迹辅助生产调度管理、里程数量统计、围栏管理等应用。车辆的运行状况也是车主非常期望掌握的,这通常需在汽车4S店或者车辆维修点才可以查看。而目前机动车车载自动诊断系统“OBD Ⅱ”已经可以提供外部接口车况检测或者汽车厂家直接通过其ECU(Electronic Control Unit,电子控制单元)接口完成车况检测,甚至电动自行车也已经结合控制器可以提供车况检测和电池电量管理等功能。
车辆防盗定位、生产调度管理、车况检测等都驱动了车联网平台的诞生。车联网组成不仅包括车辆本身,而且还包括车联网终端、用户智能手机/电脑、GPS卫星定位系统、车联网云平台,并依赖移动通信数据网、互联网完成,具体如图1所示:
车联网终端先通过GPS卫星实时获取地面行驶车辆的位置信息,再通过移动通信数据网络与车联网云平台之间建立通信。车联网终端除了包括由单片机组成的控制模块外,还包括定位模块、通信模块以及智能传感模块。
定位模块以GPS芯片为基础获得车辆所在的地理位置信息,实时不断地接收GPS卫星信号,提供车辆运动状态数据,包括车辆经纬度信息、运行速度、运行方向、时间信息等。
通信模块在图1中可与车联网云平台和用户手机/电脑终端进行数据交换,目前通信网络和终端模式可以基于2G、3G、4G甚至Wi-Fi网络。但考虑定位和车辆控制的交互数据量小(主要包括控制信令、GPS经纬度、车况检测等数据),而且室外移动范围广,同时结合移动物联网成本的考虑(终端2G通信模块与终端4G通信模块的价格约相差3至8倍),因此图1中车联网终端连接车联网平台所需的移动通信数据网络主要基于2.5G移动网络为主,这包括GPRS(GSM)网络和CDMA 1X(CDMA)网络。
智能传感模块包括防盗模块和车体性能感知模块。其中,防盗模块在用户设置防盗功能后,通常利用GPS位置信息形成电子围栏和G-Sensor(重力传感器)感知车辆被触碰或剧烈震动通过系列算法触发整车被盗报警,或者通过断电感知电池被盗,即可向用户手机发送报警信息,这种模式基本可以避免误报警;车体性能感知模块包括电池电量和车况检测功能等,让车况信息黑匣子可以向用户直观展现。
车联网云平台除了包括存储车辆的各种数据档案信息外,还包括轨迹、绑定智能手机和智能终端关系、车辆报警记录等。用户智能手机和电脑终端可以利用图1中无线数据网络(这可以是各类制式的2.5G、3G、4G移动数据网络或者Wi-Fi网络)或者有线数据网络连接车联网云平台,实时查看车辆信息、接收报警信息或控制车辆,以确保报警的有效性和远程可控性。
3 低数据速率移动通信相关技术和特性
在车联网中的应用
在移动物联网中,大量的应用如车联网、抄表业务、智慧农业、工业自动化、可穿戴设备、安防等,由于没有稳定的Wi-Fi覆盖,只能基于移动通信网络。2G网络(GSM和CDMA)经过较长时间的建设运行维护,网络覆盖面广、覆盖质量佳,特别是2G终端芯片相比3G/4G价格低廉优势明显,因此结合低速需求和成本控制的要求,GPRS和CDMA 1X低速数据网络还是大有用武之地。如果后期手机用户大量迁移到4G VoLTE网络,空余的2G频率和网络或许可以迎合快速发展的低速移动物联网无线承载容量需求。由于3G网络(CDMA EV-DO和WCDMA)通信模块的价格始终无法靠近2G通信模块,因此在低数据速率移动物联网中很难找到应用的切入。在当前4G时代,LTE与移动物联网之间总是存在一条难以跨越的鸿沟,其中成本是主因。
3GPP组织在LTE Release 13版本中所研拟的LTE-M标准目前暂时被各方看好,具备低功耗、低传输速率和高覆盖率三项特点,该规格的目标是达到100~200 kbps的最高传输速率,但标准尚在制定中,最为关键的成本看是否能突破。下面将主要探讨当前广泛应用的GPRS和CDMA 1X相关技术及产业在车联网中的应用发展态势。
3.1 终端通信模块开发
在车联网中,车联网终端在不同的通信制式中,主要是通信模块上的差异,但其也是影响车联网终端的重要成本。构成通信模块主要是GSM芯片和CDMA芯片的差异。
GSM芯片厂家众多,在MTK、展讯、互芯、Mstar等,GSM已经没有专利费;而在CDMA芯片,目前主要有高通、英特尔(2015年收购了威睿电通),且专利主要集中在高通手中。由于高通专利费、入门费居高不下;CDMA支持厂家明显弱于GSM,而且CDMA模块套片价格也高,CDMA成本约高于GSM模块2至3倍,因此基于CDMA 1X模块的车联网移动终端生产成本相对较高,CDMA 1X模块在工业领域有较大幅度落后于GSM/GPRS模块的应用。
目前在移动物联网终端包括车联网终端也出现一些新的开发模式,有些开发者摒弃采用模块化开发的模式,改为采用芯片开发共享ARM和FLASH的方式,以大幅降低成本,但这种开发模式难度大、周期长、产品稳定性对开发者要求更高。
3.2 移动物联网号码开卡
我国手机终端普遍采用机卡分离的模式。中国移动和中国联通的GSM手机终端通常采用SIM(Subscriber Identification Module,用户身份识别卡)卡,是手机的一张个人资料卡;而中国电信CDMA手机终端通常采用UIM(User Identify Module,用户识别模块)卡,是接入网络系统的标识和身份验证。在移动物联网终端应用中,通常也是采用SIM卡(UIM卡)+卡槽的模式。
但是在车联网应用中,运行环境较差,耐高温、低温,抗剧烈震动等对移动物联网终端要求较高。据统计,5%~10%的机械障碍与SIM卡(UIM卡)和卡槽的耦合有关,这也是部分用户在使用车联网终端中反馈质量问题的一个重要方面。目前,基于CDMA的车联网移动物联网终端已经重新启用在北美较为广泛使用的烧号开通号码模式,这不仅节约了UIM卡和卡槽成本,而且较好地提升了产品质量的稳定性。另外,在一些统一运营的行业应用业务模式中,行业应用业务管理者或者经营者期望通过烧号,形成号码与物联网终端一体化,避免SIM卡被非法挪用产生额外费用和网络违法行为。
目前CDMA烧号通常有两种模式:OTA(Over-the-Air Technology,空中下载技术)烧号模式和电脑数据线手编烧号模式。具体如下:
(1)OTA模式:电信运营商提供的身份识别鉴权数据无线远程传输到移动终端内。这通常需要终端拨打*228或*22800,通过系统支撑完成。*228或*22800等同于紧急特服,在协议中规定即使运营商中没有开户注册,手机终端也可以有权限默认拨打。
(2)手编模式:完成移动物联网终端号码开户后,从相关渠道获取手机卡五码数据,并且改ESN(Electronic Serial Number,电子序列号),然后通过电脑软件写入移动物联网终端,使其具备注册入网资格。在车联网应用中,基于CDMA 1X终端只要三码IMSI(International Mobile Subscriber Identification Number,国际移动用户识别码)、AKEY(Authentication Key,鉴权码)、ESN即可。
由于GSM没有烧号协议支撑,因此SIM卡槽的质量要求显得特别重要。为了提升产品的稳定性,有些开发者采用SIM卡与卡槽焊接的方法变通来解决SIM卡与卡槽之间松动造成的机械障碍和仿一体化问题。
3.3 移动网络性能要求
(1)抗干扰性。车联网或者其他移动物联网所处的环境通常较为复杂,有人为无线干扰器或者其他应用的干扰。在通常的网络设计和规划中,对于基本相同的误帧率要求,GSM系统要求到达基站的手机信号的载干比通常为9 dB左右,由于CDMA系统采用扩频技术,扩频增益对全速率编码的增益为21 dB,所以对解扩前信号的等效载干比的要求小于-14 dB,GSM对底噪的要求更为严格。
(2)安全保密性。当前GSM网络伪基站不仅对手机造成脱网影响,而且对所处的基于GSM模块的移动物联网终端造成脱网影响。此外,GSM手机短信、通话可被黑客监听也一直困扰着GSM的安全。而CDMA网络中手机与基站是双向验证,同时要在CDMA的42位PN码中去猜测某一编码有如大海捞针,可以有效保护空口安全,无线解密器无法攻破。
(3)2.5 G网络吞吐率。在支持低速率物联网应用上,GPRS(GSM)支持最大42.8 kbps、85.6 kbps上/下行数据传输速率,CDMA 1X(CDMA)支持最大153.6 kbps上/下行对等数据传输速率。在低数据速率应用中,CDMA模块比GSM模块可以支持相对更高的峰值速率。
4 结束语
车联网应用已经在某些汽车、智能电动自行车、摩托车出厂中开始预安装,也有部分行业应用用户或者个人用户后安装车联网终端,预测其今后将有广阔的市场空间,而且用户忠诚度相对较高。本文通过从车联网应用分析来看低数据速率移动物联网涉及移动通信技术应用发展态势,虽然近年来高数据速率移动通信技术更新迭代非常快,但是低数据速率通信技术或许有更稳定且独到的应用场合和应用空间。“技术为市场服务”,市场的需求将促使基于2.5 G的低速移动通信数据网络可能伴随着不断更新的高速移动通信网长期并存。
参考文献:
[1] 印欣. 移动物联网的运营策略探讨[J]. 通信世界, 2012(40): 22-23.
[2] 蔡祥春,王宜怀,周杰,等. 基于物联网技术的电动车防盗系统[J]. 计算机工程, 2011(20): 236-238.
[3] 张远文,董文宇. 电动车防盗定位装置和系统[J]. 中国新通信, 2014(21): 104-105.
[4] 路致远,赵明宇,储毅,等. 基于云计算的电动汽车运营服务平台设计[J]. 华东电力, 2013(1): 152-156.
[5] 王朝炜,王卫东,张英海,等. 物联网无线传输技术与应用[M]. 北京: 北京邮电大学出版社, 2012.
[6] 魏颖琪,林玮平,李颖. 物联网智能终端技术研究[J]. 电信科学, 2015(8): 140-146.
[7] 曾宪武. 物联网通信技术[M]. 西安: 西安电子科技大学出版社, 2014.
[8] 张宏君,高晓婧. 一种基于物联网的智能配送终端系统设计[J]. 现代电子技术, 2014(21): 24-26.
[9] 冯发旗,邹颖霄. 基于物联网的海关三位一体船舶监管体系研究与实现[J]. 现代电子技术, 2014(6): 83-87.
[10] 张琨,刘春梅,彭景. 打造物联网时代的智慧物流[J]. 移动通信, 2014(16): 77-81.
作者简介
现在的物流管理有着明显的信息化发展,随着物联网技术的发展特别是物联网技术与物联网与卫星定位技术、GSM/GPRS/CDMA移动通讯技术、GIS地理信息系统相结合,使物流管理的每一个流程都被准确无误的感知和掌握,GIS与GPS与感知信息的结合,构成了物流信息一张强大的网。
1.2智能医疗
自动识别技术为医疗领域提供了方便,最典型的代表是RFID自动识别技术,RFID技术与医院信息系统(HIS)及药品物流系统的融合,是医疗信息化的必然趋势,智能医疗能够帮助医生实现对病人全方位的监控,达到会诊记录,病情记录等关键信息的共享,还有对病人医疗器械和病人病情发展的追踪,这种智能医疗必然会得到更大的推广。
1.3智能交通
物联网在智能交通上的应用也非常普遍,最典型的例子莫过于乘坐公交车时IC卡的使用,物联网技术与公交系统的融合,统筹运用GIS和GPS等手段,达到调度,发配,收费等管理于一体,同时还有智能化的停车,系统调配红绿灯,及时查看路况信息等交通控制调配等手段,都体现了物物相连的物联网对于交通的帮助,还有公路、桥梁、交通的智能检测,都体现了智能交通的作用。
1.4智能农业
智能工业。智能农业与智能工业最主要的体现上是在对于数字的实时监控上,从生产、加工、运输、分销、零售上,企业信息管理系统,从生产监控系统,信息管理系统,质量管理系统,信息服务系统,到信息跟踪,事故追溯系统,质量评估系统,统计分析系统,信息门户系统等,使农业和工作都达到智能化的水平,方便生产。
1.5智能安保
智能安保体现在传感节点的利用上,利用传感节点的覆盖全面性,来防治翻越,偷渡,恐怖袭击等威胁安全的入侵,这种智能安保已经应用到世博会当中。2.6智能家庭物联网对于智能家庭,数字家庭的建设有着非常广阔的发展前景,智能家庭不是简单地将家中的电子产品结合到一个遥控装置当中去,这样做只是一个简单的电子设备相连,物联网所要达到的智能家庭,数字家庭的目的,是通过物联网建立外部联系,让服务与设备之间产生联系,达到互动效果,一个最理想的例子就是在工作的过程中,在办公室里就可以指挥家用电器的工作,在下班回来的途中各个家用电器已经各司其职,回家时就享受自动化的成果与便利。
2物联网通信技术的发展
物联网是推动世界发展的重要动力,有人把它比作是继计算机和互联网之后的第三次革命,这样的比喻一点也不为过,1990年的施乐公司可乐售饭机可以被看作是物联网技术的最早实践,1999年麻省理工学院Auto-ID中心在美国统一代码委员会的支持下提出了PC(ElectronicProductCode)的概念.比尔盖茨1995年在书中提及了物联网的概念,1999年美国麻省理工学院阐明了物联网的含义,但随着物联网的发展这种含义也产生了变化,再随后的时间段内,各国开始提高了对物联网的认识,并把物联网当作一项国家战略来发展,目前的物联网当中有三项关键的技术,分别是传感器技术、RFID标签、嵌入式系统技术;所涉及的四大关键领域分别是:RFID;传感网;M2M;两化融合,随着各国对于物联网技术的重视,一些关于物联网发展的战略也相继被提出,如日本的u-Japan计划,韩国确立了u-Korea计划,欧盟执委会发表了欧洲物联网行动计划,美国将新能源和物联网列为振兴经济的两大重点,智慧地球被提出并引起强烈反响。2009年8月,总理的感知中国讲话和建立的感知中国研究中心将中国的物联网信息技术推向了一个新的高度,物联网被正式列为国家五大新兴战略性产业之一。
申达集团拥有总资产近百亿元,下属20余家骨干企业,在南京、江阴、常州、成都设有生产基地,在20多个省市和地区设有销售公司,在业内具有较大的影响力和话语权。
软塑薄膜生产企业的一个特点是产品品类繁多。目前申达集团的主导产品就包括了BOPP薄膜、BOPET薄膜、多层共挤特种薄膜等数百个品种,年产各种软塑薄膜材料25万吨。
企业规模大,产品品类多,应用范围广,与之对应的就是客户数量急剧增多。渐渐地,庞大而杂乱的客户群体使得申达集团的客户管理工作力不从心。据邵虹介绍:“之前,客户及订单信息没有系统而完整地记录和存档,而是零星分散在各个业务人员手里,且档案不齐全,不利于客户信息管理,无法迅速、准确、及时地提供客户的历史交易信息。”邵虹指出,随着企业业务量的快速增长,没有信息系统的支持,缺乏集成数据,企业无法进行销售体系的多方位、深层次、高质量分析,也无法随时查询库存和呆滞品信息,企业报表经常呈现延迟状态,不能为经营决策提供及时有力的信息支持。
“我们首先需要对公司经营管理方面存在的问题进行一次全方位的诊断。”2003年,申达集团开始委托无锡一家软件公司对企业进行为期2个多月的调研。结果发现,除了以上提到的销售管理方面的问题外,申达集团在生产采购管理和仓储管理方面也亟待改进。“由于公司产品的规格、品种多,生产物资计划人员的手工操作数据量大,效率低下,经常出现客户急需的没在生产,而在生产的又不是急需的情况。在仓储管理中,没有系统数据及时反馈库存数量,在统计、汇总、上报方面,仓管人员很难做到准确、及时,更难做到‘先进先出’。”据邵虹介绍,为解决仓储管理问题,申达集团当时采取的方法是多配人手。“我们安排了10多名仓管人员,还是不能满足客户的需求。往往客户上午九点到工厂提货,要到下午三四点才能提到货,意见很大。”
解决问题
根据软塑薄膜企业的生产特点和信息化发展的必然要求,申达集团下决心开始进行企业信息化建设,前后共投资500多万元开发了计算机辅助管理系统,在客户管理、订单、生产、入库、仓储、发货、销售等环节设置了系统管理基础信息模块,用以满足用户信息、产品种类、代码、品种规格、包装方式等方面的基础数据管理需求。
申达集团根据自身情况,在信息管理系统建设中着重建立几个模块。其中,生产系统模块有助于优化计划排产、及时观察在线成产状况、反映各生产单位绩效(产品等级、料耗、产量等)、有效监控原料储备状况;仓储系统模块可以及时反映库存,便于报表自动汇总和生成,利于库存产品先进先出并按不同周期进行盘点;质量系统模块重在解决不合格品管理、销售退货入库管理、生产产品入库检验等环节的问题;销售系统模块能建立客户档案及交易信息、录入合同(订单)数据、及时汇总分析业务人员业绩、系统通知客户提货(发货)、管理销售开票等。“经过几大业务系统的联合,打通了部门间的业务流程,降低了管理成本。”邵虹欣喜地说到。