发布时间:2023-10-13 18:16:42
绪论:一篇引人入胜的物联网通信技术的发展,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

1 引言
从手机和移动宽带衍生发展而来的M2M模块在行业应用信息化中得到大力应用,移动物联网成为一个新兴市场。战略无线业务咨询公司Northstream曾公布了它对2016年全球移动电信行业走势的预测:预计“物联网黄金时代”将拉开序幕。
目前承载移动物联网的主要无线传输网络包括2G(2.5G)/3G/4G移动网络、Wi-Fi网络、ZigBee、蓝牙等,并且大约70%的移动物联网都是以低数据速率的低端通信模块为主。本文将主要探索低数据速率移动物联网的通信技术发展方向和产业化方向,并以车联网为例进行探讨。
2 车联网结构
截至2015年6月底,全国机动车保有量达2.71亿辆,电动自行车保有量也已突破2亿辆。汽车、摩托车、电动自行车已经成为各个阶层工作、生活中必备的交通工具,但被盗现象却时有发生,因此用户对车辆防盗、定位管理需求日益强烈。
此外,一些快递物流、外勤服务、车队管理、汽车租赁管理等不仅需要车辆定位,而且使用轨迹辅助生产调度管理、里程数量统计、围栏管理等应用。车辆的运行状况也是车主非常期望掌握的,这通常需在汽车4S店或者车辆维修点才可以查看。
而目前机动车车载自动诊断系统“OBD Ⅱ”已经可以提供外部接口车况检测或者汽车厂家直接通过其ECU(Electronic Control Unit,电子控制单元)接口完成车况检测,甚至电动自行车也已经结合控制器可以提供车况检测和电池电量管理等功能。
车辆防盗定位、生产调度管理、车况检测等都驱动了车联网平台的诞生。车联网组成不仅包括车辆本身,而且还包括车联网终端、用户智能手机/电脑、GPS卫星定位系统、车联网云平台,并依赖移动通信数据网、互联网完成,具体如图1所示:
车联网终端先通过GPS卫星实时获取地面行驶车辆的位置信息,再通过移动通信数据网络与车联网云平台之间建立通信。车联网终端除了包括由单片机组成的控制模块外,还包括定位模块、通信模块以及智能传感模块。
定位模块以GPS芯片为基础获得车辆所在的地理位置信息,实时不断地接收GPS卫星信号,提供车辆运动状态数据,包括车辆经纬度信息、运行速度、运行方向、时间信息等。
通信模块在图1中可与车联网云平台和用户手机/电脑终端进行数据交换,目前通信网络和终端模式可以基于2G、3G、4G甚至Wi-Fi网络。
但考虑定位和车辆控制的交互数据量小(主要包括控制信令、GPS经纬度、车况检测等数据),而且室外移动范围广,同时结合移动物联网成本的考虑(终端2G通信模块与终端4G通信模块的价格约相差3至8倍),因此图1中车联网终端连接车联网平台所需的移动通信数据网络主要基于2.5G移动网络为主,这包括GPRS(GSM)网络和CDMA 1X(CDMA)网络。
智能传感模块包括防盗模块和车体性能感知模块。其中,防盗模块在用户设置防盗功能后,通常利用GPS位置信息形成电子围栏和G-Sensor(重力传感器)感知车辆被触碰或剧烈震动通过系列算法触发整车被盗报警,或者通过断电感知电池被盗,即可向用户手机发送报警信息,这种模式基本可以避免误报警;车体性能感知模块包括电池电量和车况检测功能等,让车况信息黑匣子可以向用户直观展现。
车联网云平台除了包括存储车辆的各种数据档案信息外,还包括轨迹、绑定智能手机和智能终端关系、车辆报警记录等。用户智能手机和电脑终端可以利用图1中无线数据网络(这可以是各类制式的2.5G、3G、4G移动数据网络或者Wi-Fi网络)或者有线数据网络连接车联网云平台,实时查看车辆信息、接收报警信息或控制车辆,以确保报警的有效性和远程可控性。
3 低数据速率移动通信相关技术和特性
在车联网中的应用
在移动物联网中,大量的应用如车联网、抄表业务、智慧农业、工业自动化、可穿戴设备、安防等,由于没有稳定的Wi-Fi覆盖,只能基于移动通信网络。2G网络(GSM和CDMA)经过较长时间的建设运行维护,网络覆盖面广、覆盖质量佳,特别是2G终端芯片相比3G/4G价格低廉优势明显,因此结合低速需求和成本控制的要求,GPRS和CDMA 1X低速数据网络还是大有用武之地。
如果后期手机用户大量迁移到4G VoLTE网络,空余的2G频率和网络或许可以迎合快速发展的低速移动物联网无线承载容量需求。由于3G网络(CDMA EV-DO和WCDMA)通信模块的价格始终无法靠近2G通信模块,因此在低数据速率移动物联网中很难找到应用的切入。在当前4G时代,LTE与移动物联网之间总是存在一条难以跨越的鸿沟,其中成本是主因。
3GPP组织在LTE Release 13版本中所研拟的LTE-M标准目前暂时被各方看好,具备低功耗、低传输速率和高覆盖率三项特点,该规格的目标是达到100~200 kbps的最高传输速率,但标准尚在制定中,最为关键的成本看是否能突破。下面将主要探讨当前广泛应用的GPRS和CDMA 1X相关技术及产业在车联网中的应用发展态势。
3.1 终端通信模块开发
在车联网中,车联网终端在不同的通信制式中,主要是通信模块上的差异,但其也是影响车联网终端的重要成本。构成通信模块主要是GSM芯片和CDMA芯片的差异。
GSM芯片厂家众多,在MTK、展讯、互芯、Mstar等,GSM已经没有专利费;而在CDMA芯片,目前主要有高通、英特尔(2015年收购了威睿电通),且专利主要集中在高通手中。
由于高通专利费、入门费居高不下;CDMA支持厂家明显弱于GSM,而且CDMA模块外围套片价格也高,CDMA成本约高于GSM模块2至3倍,因此基于CDMA 1X模块的车联网移动终端生产成本相对较高,CDMA 1X模块在工业领域有较大幅度落后于GSM/GPRS模块的应用。
目前在移动物联网终端包括车联网终端也出现一些新的开发模式,有些开发者摒弃采用模块化开发的模式,改为采用芯片开发共享ARM和FLASH的方式,以大幅降低成本,但这种开发模式难度大、周期长、产品稳定性对开发者要求更高。
3.2 移动物联网号码开卡
我国手机终端普遍采用机卡分离的模式。中国移动和中国联通的GSM手机终端通常采用SIM(Subscriber Identification Module,用户身份识别卡)卡,是手机的一张个人资料卡;而中国电信CDMA手机终端通常采用UIM(User Identify Module,用户识别模块)卡,是接入网络系统的标识和身份验证。在移动物联网终端应用中,通常也是采用SIM卡(UIM卡)+卡槽的模式。
但是在车联网应用中,运行环境较差,耐高温、低温,抗剧烈震动等对移动物联网终端要求较高。据统计,5%~10%的机械障碍与SIM卡(UIM卡)和卡槽的耦合有关,这也是部分用户在使用车联网终端中反馈质量问题的一个重要方面。
目前,基于CDMA的车联网移动物联网终端已经重新启用在北美较为广泛使用的烧号开通号码模式,这不仅节约了UIM卡和卡槽成本,而且较好地提升了产品质量的稳定性。另外,在一些统一运营的行业应用业务模式中,行业应用业务管理者或者经营者期望通过烧号,形成号码与物联网终端一体化,避免SIM卡被非法挪用产生额外费用和网络违法行为。
目前CDMA烧号通常有两种模式:OTA(Over-the-Air Technology,空中下载技术)烧号模式和电脑数据线手编烧号模式。具体如下:
(1)OTA模式:电信运营商提供的身份识别鉴权数据无线远程传输到移动终端内。这通常需要终端拨打*228或*22800,通过系统支撑完成。*228或*22800等同于紧急特服,在协议中规定即使运营商中没有开户注册,手机终端也可以有权限默认拨打。
(2)手编模式:完成移动物联网终端号码开户后,从相关渠道获取手机卡五码数据,并且改ESN(Electronic Serial Number,电子序列号),然后通过电脑软件写入移动物联网终端,使其具备注册入网资格。在车联网应用中,基于CDMA 1X终端只要三码IMSI(International Mobile Subscriber Identification Number,国际移动用户识别码)、AKEY(Authentication Key,鉴权码)、ESN即可。
由于GSM没有烧号协议支撑,因此SIM卡槽的质量要求显得特别重要。为了提升产品的稳定性,有些开发者采用SIM卡与卡槽焊接的方法变通来解决SIM卡与卡槽之间松动造成的机械障碍和仿一体化问题。
3.3 移动网络性能要求
(1)抗干扰性。车联网或者其他移动物联网所处的环境通常较为复杂,有人为无线干扰器或者其他应用的干扰。在通常的网络设计和规划中,对于基本相同的误帧率要求,GSM系统要求到达基站的手机信号的载干比通常为9 dB左右,由于CDMA系统采用扩频技术,扩频增益对全速率编码的增益为21 dB,所以对解扩前信号的等效载干比的要求小于-14 dB,GSM对底噪的要求更为严格。
(2)安全保密性。当前GSM网络伪基站不仅对手机造成脱网影响,而且对所处的基于GSM模块的移动物联网终端造成脱网影响。此外,GSM手机短信、通话可被黑客监听也一直困扰着GSM的安全。而CDMA网络中手机与基站是双向验证,同时要在CDMA的42位PN码中去猜测某一编码有如大海捞针,可以有效保护空口安全,无线解密器无法攻破。
(3)2.5 G网络吞吐率。在支持低速率物联网应用上,GPRS(GSM)支持最大42.8 kbps、85.6 kbps上/下行数据传输速率,CDMA 1X(CDMA)支持最大153.6 kbps上/下行对等数据传输速率。在低数据速率应用中,CDMA模块比GSM模块可以支持相对更高的峰值速率。
4 结束语
车联网应用已经在某些汽车、智能电动自行车、摩托车出厂中开始预安装,也有部分行业应用用户或者个人用户后安装车联网终端,预测其今后将有广阔的市场空间,而且用户忠诚度相对较高。
1 物联网定义、组成结构及其特点概述
将网络技术应用于万物,是对物联网最直接的表述。物联网的英文全称是Internet of Things,是指将无处不在的终端设备和应用设施,例如具有智能化能力的传感器、移动终端设备、工业工程系统、电子数控系统、家庭数字智能设备等, 与周围安装有无线终端接收设备的个人与车辆等等连接,通过各种无线或有线发射接收技术,在长距离或短距离的通讯上,实现不同类型的网络之间的互联互通效果。在各种网络环境下,采用保障终端设备信息安全的机制,为各联接终端提供安全可控甚至是具有个性化的实时在线监测、定位搜索、报警联动、调度指挥等管理方式和服务功能,实现网络技术对“万物”的“高效便捷、节能环保、安全放心”的“管理、防控、经营”一体化功能。
构成物联网的框架部分由3部分组成,它们分别是:控制整个物联网的核心能力,让物联网具有感知能力的感知层,感知层反应着物联网的技术含量,是开发部门追求进步的重要一层;接下来就是以移动通信网络为根本,技术最为成熟,各方面都是最全面的,只有经过小部分完善的网络层;最后一层是应用层,面对的是移动终端的用户,通过物联网技术将企业的信息展现到终端用户面前,为终端用户提供全面高效的服务方案,整个物联网具有着融合企业信息、提供资源开发利用、保障信息安全的开发能力。物联网系统主要包括有:支撑服务运营的系统、虚拟空间中的传感网络系统、终端业务服务的应用系统、作为连接基础的无线通信网系统等组成。
过去的互联网是基于计算机技术而开发出来的信息技术,现今的物联网技术所取用的核心部分依然是互联网技术,物联网技术只是对互联网所能实现的功能进行扩展和延伸,达到物体与物体的连接。由于物理材料、物理技术的升级,通过光感技术、红外技术、等等,物联网技术能快捷的使两种不同的行业产生联系,使得像超市、护肤品专卖店等这类实体经营店也能通过网络技术产进行交流。总的来讲结合力物联网的移动通信有以下几个方面的特点。
1.1 物联网技术服务的对象更广
过去的移动互联网由于技术条件的限制,服务对象局限于移动终端,没有将这些对网络服务需求高的大量的实体类的客户端纳入网络空间去,服务效应明显低下了很多,而物联网技术的引入刚好满足了这类对网络应用需求高客户群体,方便了实体类的客户端对人们的快捷服务,填补了之前服务所达不到的空缺部分,扩大了通信公司服务的范围。
1.2 物联网缩短了服务的反应时间
以往人们需要社会设施服务的时候,需要很长一段时间才能得到。物联网则彻底缩短了人们申请服务的反应时间,需求人群只要通过物联网或者使用物联网上提供此类服务的APP一个简单的需求信息,能提供该类服务的从业人员在接到需求信息之后就能快速反应,到达需求人群身边解决所遇到问题或是提供需要的服务,经过物联网的提速,使得生活变得更简单方便了。
1.3 物联网个人信息保护更高
物联网技术是在互联网技术的基础上发展起来的,在保护用户个人信息发面已经有了经验,再加上新的加密解密技术,物联网对用户信息保护的能力更加提升了一个环节,物联网保护信息的能力更高。
2 物联网技术下移动通信技术的应用与发展探究
我国通信行业经过了互联网时代的升级,有了长足的进步,但物联网是一种新的技术,未来的上限需要经过不断的探索才能确定,因而笔者提出以下几点建议。
2.1 加快物联网与移动通信技术的结合进程
每一项新技术的出现到为大众带来福利都是需要一个时间发展的过程来完成的,物联网技术作为互联网技术的扩展,有互联网技术运作所打下的经验基础。因此,物联网与移动通信技术的结合进程要加快。移动物联网的发展,为用户生活创造便利,更为移动通信行业开展出新的业务创造出前提和准备。通信公司要发掘通信领域内的技术优势,充分运用终端平台的高度智能特性,开发出便捷服务于广大群众同时又支持这类智能平台的APP软件,使广大群众能充分体验到物联网对改变生活、服务生活的优势。通信公司要注意到的是,公司要通过电话调查、问卷调查,等等方式来获取广大用户对公司所开展的这些服务的感受、看法,了解带终端使用者对需求,这样技术开发部门才能开发出符合用户需要的应用软件。
2.2 增强网络监管力度,打击网络违法行为
中图分类号:TP 文献标识码:A 文章编号:1009―914X(2013)35―495―01
进入21世纪以来,网络正在日益深刻地改变着人们的生产和生活方式。时至今日,随着感知识别技术的快速发展,信息从传统的人工生成的单通道模式转变为人工生成和自动生成相结合的双通道模式。以传感器和智能识别终端为代表的信息自动生成设备可以实时准确的开展对外部世界的感知、测量和监控。
物联网是在物理世界的联网需求和信息世界的扩展需求双重推动下不断发展起来的一种新型网络。其本质是一个基于互联网、传统电信网等信息承载体、让所有能够被独立寻址的普通物理对象实现互联互通的网络。它所具有的3个重要特征是:普通对象设备化、自治终端互联化和普适服务智能化。简单的解释就是:身处物联网时代,所有的物体均能够实现可寻址、可通信、可控制。
海事通信作为航海保障体系的重要组成部分,在海上遇险值守搜救、安全警报信息播发、服务船舶用户通信需求等发面都发挥了至关重要的作用。时至今日,海事通信已经走过了数十年的发展历程,也正处在技术升级和服务转型的关键时期,如何利用好当前先进的计算机与信息技术,建设数字化海事通信体系,以更加智能便捷有效的通信方式跟上时代的发展步伐,是每一个海事通信人都在思考的问题。物联网技术的应用无疑为海事通信的数字化、信息化带来了新的思考与发展的契机。
物联网主要分为四个层次,即:感知识别层、网络构建层、管理服务层和综合应用层。在海事通信领域,物联网技术的应用也同样分为感知识别、网络传输、监测管理和综合应用这几个部分:海事通信承担着海上遇险值守和信息播发的任务,需要人员24小时值守待命,各类通信设备如接收机、大功率发射机等设备都要保持24小时运转,需要及时对各类信息及突况作出准确的反应,这无形中消耗了极大的人力资源;针对传统通信机房而言,存在着机房设备24小时不间断运行、收、发信机及网络设备种类多样、涉及与各类天线的工作协调、发信机发射功率大等诸多特点,此外如何高效的管理和使用通信设备,以及如何监督通信质量都是当前亟待解决提高的一些问题。针对这些特点,物联网技术能够为海事通信的日常管理提供一些新的思路:
1.使用RFID(射频识别技术)用于存储每一台设备的基本操作信息和维修保养记录:RFID技术利用无线射频方式在阅读器和射频卡之间进行非接触双向数据传输,以达到目标识别和数据交换的目的。与传统的条型码、磁卡及IC卡相比,射频卡具有容量大、非接触、阅读速度快、无磨损、不受环境影响、寿命长、便于使用的特点和具有防冲突功能,能同时处理多张卡片。在国外,射频识别技术已被广泛应用于工业自动化、商业自动化、交通运输控制管理、资产管理等众多领域。目前生产的RFID产品主要分为主动式和被动式两大类:内部不带电池的标签称为被动式标签,需要外部持续提供能量才能正常工作,被动式标签的特点是读取距离较近,一般为几厘米到5米范围,其寿命较长、成本较低,但读取设备价格昂贵;内部自带电池的标签称为主动式标签,能够自发发射信号,发射功率一般小于5mw,具有同时识别多个目标系统的能力,能对100km/h的高速移动目标进行识别,可调识别范围能够扩大到100m左右,主动式标签寿命受电池影响,成本较高,但相比而言读取设备价格较低。针对两类RFID标签的特点,考虑到通信设备普遍具有较强的电磁屏蔽、较高的功率接收与发射以及根据信号传输距离的需要,在实践中应主要采用主动式RFID作为实践探索的方向,同时采用错开工作频率、扩展读取频率、加装信号中继器等手段,克服机房内的信号干扰和电磁屏蔽。在海事通信领域,为每一台接收机、发信机和网络设备配备RFID电子标签不仅能够方便的使用读写器读取通信设备的名称、型号和工作参数,还将能够随时调取操作说明和产品说明书,记录故障和维修保养情况,给值守操作和维修保养作业提供便利,有效地提升对通信设备的管理水平。
2.使用智能传感器监测替代传统的人工值守模式,时时监控通信设备各类工作指标:传感器作为信息获取的重要手段,与通信技术和计算机技术共同构成了信息技术的三大支柱,随着电子器件的不断更新换代,现代传感器正逐步向微型化、智能化和网络化的方向发展。如今,智能传感器在军事、楼宇管理、医疗监控等应用领域中都正在发挥着日益显著的作用。在海事通信领域,智能传感器能够最大限度的替代传统的人工模式,其通过自带的微处理器和无线传输装置,能够将每一台通信设备产生的零散信息进行简单的比较处理后汇总于统一的监控终端,方便值班人员监控查询,这些数据可以包括外界环境的温湿度数据、收发信机的工作频率、当前的发射功率、驻波比情况、电力及高压工作情况、天线的连接状态、散热系统的运行情况等重要工作参数;同时,一旦设备发生故障报警,专门用于监测告警信息的传感器即会将故障信息及时发送给监控终端,值守人员在获得告警信息后,可以选择根据告警内容,通过无线传输简单的开关指令,使用微处理控制系统操作发信设备和天线倒换设备实现诸如断开高压、更改频率、调换天线、关闭供电等简单操作,从而实现设备的远程监控与管理。
3.海事通信服务的对象是广大船舶用户和港航单位,对发射信号的质量有较高的要求,通过物联网技术能够实现对信号质量的实时监控。海事通信为了确保能够准确的接收和发射安全信息和遇险搜救信息,就要求在任何条件下,信号的发送必须提供尽可能采用较大的发射功率,同时减小干扰信号,确保信号的发射质量。当前对于信号质量的监控,仅仅局限于监控发信机的发射功率和驻波比情况,采用人工方式与用户进行沟通后反馈获得。随着物联网技术的发展,具有信号接收功能的传感设备即可以被部署到信号覆盖的码头、钻井平台、船舶等工作场所,实时接收发射的信号,通过处理器统计信号强度、干扰状况等,并将监测信息通过互联网、wifi、蓝牙、微波传输、海事卫星等多种传输手段发回监测终端,使值守人员能够随时掌握各路通信在不同区域的信号发射接收情况,便于合理调配通信资源,实现海事安全信息和遇险搜救信息的全面覆盖。采集到的信息被存入指定的数据库系统,将能够对整个北方海区所和接收的各类信息进行统一的存储与管理,分析各个航行区域和港口码头的船舶信息需求,并整合其他海事信息资源如AIS(船舶自动识别系统)、CCTV(海事数字电视监控系统),合理的进行调配与使用,提高海事通信的管理能力与服务水平。