首页 公文范文 纳米化学分析

纳米化学分析汇编(三篇)

发布时间:2023-09-28 10:32:23

绪论:一篇引人入胜的纳米化学分析,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

篇1

纳米材料是基于现代科学技术不断进步的基础上所形成的一种新型材料,性质独特,基于特殊结构层次的影响下,纳米材料具有一定的表面效应、小尺寸效应以及宏观量子隧道效应等。纳米材料在化学化工领域内具有良好的应用价值,以下开展具体分析。

1 纳米材料及其特性

纳米材料是一种新型材料,三维空间中至少有一维处于纳米尺度,或者以纳米尺度作为基本结构,该材料的尺寸结构特殊,相当于10-100个原子紧密排列在一起。纳米科技将成为21世纪科学技术发展的主流,它不仅是信息技术、生物技术等新兴领域发展的推动力,而且因其具有独特的物理、化学、生物特性为涂料等领域的发展提供了新的机遇。

纳米材料主要由纳米晶粒和晶粒界面两部分组成,其晶粒中原子的长程有序排列和无序界面成分的组成后有大量的界面(6×1025m3/10nm晶粒尺寸),晶界原子达15%~50%,且原子排列互不相同,界面周围的晶格原子结构互不相关,使得纳米材料成为介于晶态与非晶态之间的一种新的结构状态。纳米材料主要有四方面特性,分别是表面效应、小尺寸效应以及宏观两字隧道效应,以下分别进行具体分析:

一是表面效应,纳米材料的表面效应是指纳米粒子表面原子数与总原子数的比例值随着粒径变小而急剧增长后所导致的性质改变。根据相关研究表示,伴随着粒子直径的缩短,避免原子个数的增长速度迅猛,而表面原子由于周围缺乏相邻原子,呈现不饱和性状态,强化了纳米粒子的化学活性,从而使得纳米材料能够在吸附、催化等作用上明显的优势。

二是小尺寸效应。小尺寸效应即为纳米粒子的粒径小于或等于超导态的相干波长时,其周期性的边界条件将被损害,从而使得纳米材料的化学性质、催化性质相对于其他材料来说有着明显的区别。小尺寸效应不单单显著扩展了纳米材料的物理与化学特性范围,并且大大拓展了其应用领域。

三是宏观量子隧道效应。该效应主要是指纳米粒子能穿越宏观系统的壁垒而出现变化的一种特征。这一效应对纳米材料的基础研究与实际应用都有着十分关键的作用。宏观量子隧道效应限制了磁盘对信息存储量的限制,明确了现代微电子元件微型化的极限。

四是量子尺寸效应。该效应主要是指纳米粒子尺寸持续减少到某一数值时,纳米能级周边的电子能级可以转变为分离能级粒。这一效应使得纳米粒子拥有高水平的光学非线性、光催化性等特征。

总的来说,纳米材料与其他材料不同,拥有众多与众不同的特性,这使得其在力学、磁学、热学等各个领域都拥有十分重要的应用价值,并给资源利用拓展了更大的空间。

2 纳米材料在化学化工领域内的应用

2.1在环境保护方面的应用

纳米材料以其自身基本特性在环境保护领域内发挥着重要的作用,为空气污染与水体污染治理等提供了可靠的技术支持,改善了空气与水体质量,满足可持续发展理念下环境保护的基本要求。

就纳米材料在空气净化方面的作用来看,其具有细微的颗粒尺寸,并且纳米微粒表面形态特殊,粒径大小各不相同,对着粒径的减少纳米微粒表面粗糙状态加剧,最终形成凹凸不平的原子台阶,从而对空气污染进行科学化治理,提高空气净化效果。纳米材料与技术在汽车尾气超标报警器与净化设备中也具有良好的应用效果,能够有效提高设备性能,从而切实减少汽车排放尾气中所含的有毒物质,降低空气污染指数,从而为社会群体的工作与生活提供优质的环境。除此之外,纳米材料与技术在石油提炼工业中也具有良好的应用价值,能够优化脱硫环节,从而提高石油炼化工业的生产效率。

就纳米材料在污水治理方面的作用来看,其能够有效提取污水中的贵金属,去除污水中的有害物质、污染物质和细菌等,从而改善水质,并能够实现循环利用,对于社会生态的稳定平衡发展具有重要意义。水体中的污染物均可以基于纳米材料与技术来进行治理,在有机污染物与无机污染物上并没有明显差异,尤其是纳米为例光催化作用,能够将水体中的污染物制造为矿化物,从而促进改善水质,去除有害污染物的目标得以顺利实现。

2.2在涂料领域内的应用

纳米材料及技术在涂料领域内也发挥着重要的作用,由于纳米材料存在一定表面效应,其结构层次特殊,与其他材料相比纳米材料的性质比较特殊,并具有一定优势与活力。纳米材料在化学化工领域内的应用主要体现在表面涂层方面,并且受到社会群体的高度灌注。纳米材料及其技术的合理应用,推进了涂料领域内表面涂层技术的不断发展,为化学化工领域各项活动的规范进行提供可靠的技术支持。基于传统涂层技术的基础上,纳米复合体系涂层得以实现,并促进了表面涂层技术的不断发展进步。由于纳米材料具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应和一些奇异的光、电、磁等性能,将其用于涂料中后,除了可以改性传统涂料外,更为重要的是可以制备各种功能涂料,如具有抗辐射、耐老化、抗菌杀菌、隐身等特殊功能的涂料。

基于纳米材料与技术的纳米复合体系涂层的出现和应用,改善了涂料的防护能力,并使得涂料具备防紫外线等作用,使得涂料的使用价值得到明显改善。在汽车装饰喷涂行业中对纳米材料与技术加以合理应用,能够海山汽车漆面的色彩效果;将纳米材料应用于建筑材料涂料中,能够改善热传递效果,并减少透光性,从而优化涂料性能,满足实际使用需求。

2.3纳米材料材料在催化领域中的应用

催化剂在众多化工领域中都占据着十分重要的地位,其能够控制反应时间、提升反应速度与效率,显著提升经济效益,减少对生态环境的污染。首先,光催化反应。纳米粒子作为光催化剂拥有粒径细、催化效率高等优势,十分容易利用光学手段来对界面的电荷转移进行等特点进行研究。例如,利用纳米TiO2应用在高速公路照明装置的玻璃罩面中,由于其拥有较高水平的光催化活性,能够对其表面的油污进行分解处理,从而保证其良好的透视性。又例如,在火箭发射所使用的固体燃料推进器中,如添加大约为1wt%的超细铝或镍颗粒,可以使得其燃烧使用率增加100%。将表面为180m2/g的碳纳米管直接应用在NO的催化还原中,从而可以增加NO的转化率。

3 结束语

总而言之,随着现代科学技术的不断进步,纳米技术得以形成,并在能源、环境保护等方面发挥着重要的作用,纳米技术在化工领域中的合理应用,一定程度上改善了社会群体的生活状态,为新产品的研发与设计以及产品质量的提升提供可靠的技术支持,对于现代社会经济的发展也具有重要意义。在未来发展中,纳米技术也具有广阔的发展空间。

参考文献:

篇2

一、碳纳米管修饰电极

1. 化学修饰电极的制备与分类

化学修饰电极的制备是化学修饰电极的关键问题,制备过程中关于修饰方法、过程步骤、制备的优劣都对化学修饰电极有着重要的影响。我们按照化学修饰电极上面固定材料的类型可以将其分为单分子层、多分子层以及组合型等三大类. [1]其中多分子层以聚合物薄膜为主。电极表面的修饰方法按照修饰类型的不同可以分为共价键合法、吸附法和聚合法三类。但是通常情况下我们不会使用单一的方法,而是这几种方法组合使用完成对化学电极的修饰过程。大体的分类如图1所示:

图1 化学修饰电极的制备和分类

(1)共价键合型

我们实际生活中经常用到的固体电极如金属、金属氧化物以及石墨等等,表面存在着多种含氧基。我们可以对其进行氧化还原处理增加含氧基的数目,让其与修饰化合物进行共价键合反应,把特定的功能基团留在电极的表面上。共价键合法的修饰物固定比较牢靠,但是修饰过程复杂,并且修饰效果不高。

(2)吸附型

吸附法最常见的应用是单分子层修饰电极的制备,有时也用于制备多分子层修饰电极。

(3)聚合物型

聚合物型是利用一些聚合方法方法在电极表面形成修饰膜。其中电化学聚合方法是很重要的薄膜合成法方法之一,它主要是利用氧化或者还原反应在电极上产生自由基,然后再经过缩聚反应制备该薄膜。聚合物方法形成的薄膜稳定,厚度均匀并且可控。因此在薄膜制备中得到了广泛的应用。

2. 碳纳米管修饰电极类型

纳米材料表面覆盖着的是一层非晶层,该层没有短程序和长程序。由于原子的周围原子很少,产生了许多悬空键表现出极大地极性。具有相当高的催化效率,因此其是一种很好的修饰材料,并且具有极大的潜力。现如今关于碳纳米管修饰材料的研究很热门。

鉴于碳纳米管的良好的电子特性,其进行化学反应时能很好地促进电子的迁移。关于单壁和多壁的纳米管都可以用来修饰电极和制备电极。其主要分为以下四种类型:

(1) 碳纳米管糊电极

Britto 在1996年将碳纳米管调匀后导入到玻璃管中,并用导线引出,制备出来了碳糊电极。这是碳纳米管在点分析中的最早应用,随后牛津大学、清华大学等也相继制备出了各种糊电极应用于各个领域。[2]但是上述几种纳米管普遍存在着重复性较差、寿命较短等,虽然制备过程较为简单,但是应用受到限制。因此,人们开始便致力于应用更广泛的碳纳米管薄膜修饰。

(2)碳纳米管薄膜修饰电极

碳纳米管有着诸多上述优良特性,但是其的不溶性大大限制了其在碳纳米管薄膜修饰电极方面的应用。碳纳米管的不溶性表现为其几乎不溶于所有溶剂。我们在制备前需要将其进行超声分散得到悬浮体系。根据所用分散剂的不同我们分为以下几个体系:碳纳米管-有机溶剂分散体系、碳纳米管-硫酸分散体系和碳纳米管-表面活性剂分散体系。

二、碳纳米管修饰电极在环境分析中的应用

1.碳纳米管修饰电极测定环境中的重金属阳离子

环境中的重金属阳离子Pb2+、Cd2+、Hg2+等是重金属污染物,严重危害着人们的健康发育,因此对其检测是至关重要的。利用纳米管―石墨糊电极对水体进行测定,性能稳定,使用寿命长,是一种较好的选择。

2. 碳纳米管修饰电极测定环境中的阴离子及其化合物

存在于工业废水以及食物中的亚硝酸根离子对人来有致癌的危险,研究其相关测定方法具有重大意义。人们借助一种对NO2-具有高灵敏度高选择性的壳聚糖-碳纳米管修饰电极可直接富集和测定水样中的NO2-,检测效果较好。

3.碳纳米管修饰电极测定环境中有机污染物

为了测定水环境中的苯酚含量,我们采用多壁纳米管修饰电极对其进行测定。该修饰电极具有较强的吸附特性,苯酚存在着较强的富集效率。使得苯酚在修饰电极上的氧化峰电流显著增加进行测定。

三、展望

碳纳米管修饰电极是一类新兴的电极,在环境分析中有广阔的应用前景。如能进一步研究碳纳米管的分散剂,使碳管和分散剂的作用结合起来,利用吸附和键合作用于待测物质以提高对其测定的灵敏度,必将使碳纳米管修饰电极的应用产生一个新的飞跃。

参考文献:

篇3

分析化学实验中实验结果的处理的准确性和测定结果[1]是分析化学实验最基本的要求。 化学实验数据处理对获得有益的实验结论非常重要。学生分析结果的准确程度也是教师判定其实验成绩的主要依据。利用0fign 7.0软件绘制实验结果图进行多条曲线[2]的拟合,建立分析化学实验数据库,绘制学生实验的质量控制图,操作简易可行,结果准确及时,图形清晰美观,能够有效地调动教师和学生的创造性和积极性。累积存储教学资料,提高了学生处理数据的能力,节省时间,掌握了数据处理的有效方法。且能在后续的实验课程中,应用所学的0rign 7.0软件处理各类实验数据[3],乃至在今后的学习和工作中发挥应有的作用。

1 数据处理和判定的重要性

1.1 分析数据结果的统一标准值不宜用教师预先实验的数据的分析结果为标准,给全体学生评分,因为教师预先实验的样本数目偏少,以其操作结果为标准,风险比较大。考虑到实验条件不相同(如温度、湿度)客观因素,为了公正的评价应该以当天的学生总体平均值为标准。

1.2 运用0rign7.0建立学生实验记录分析数据结果

选择分析化学中部分实验内容[4](如吸收光谱、酸度或pH值等实验)利用0fign 7.0建立学生实验记录分析数据结果的统一标准值,进行曲线拟合,将学生测量的曲线绘制在一张图中,其中重合性最强的是本次实验结果的标准值。

2 应用0rign7.0建立教师质量控制体系

2.1 学生应用0rign 7.0软件绘制曲线。进行实验结果的初步分析每一位学生打开0rign 7.0软件,在Datal的列表[5]的A[x]和B[Y]中分别按“列”输入实验数据。选定所有实验数据,依次点“Plot”和“Line+Symbol”,出现实验草图,点击“Line”和“Style”中和各项,选择所得曲线的类型、颜色和曲线上的实验点的大小、类型。点击“Add Text”给所得曲线加记标注,完成整个绘图过程。如果实验曲线是线性,学生可应用0rign 7.0软件的功能可以对线性曲线进行拟合直线的回归方程“Y=A+BX”和相关系数,对实验结果进行分析。选定所得数据,通过[6] Analysis/Statistics 0n Co1.umns工作表窗口得到实验的平均值,标准偏差、标准误差和总和。并且可以将所绘图形拷到W0RD文档中。例如测甲基橙与亚硝酸反应的紫外吸收光谱曲线由图1所示,由图1(b)(非催化体系)和图1(e)(催化体系)可以看出最大吸收波长为λ=510 nm,故实验选择510/lm为测定波长。

1.空白试剂(H S0 +甲基橙);

2.非催化体系(H S0 +甲基橙+KBr03);

3.催化体系(H S0 + 甲基橙+ KBr03+NaN02)。

2.2 教师绘制实验结果拟合图教师打开新的工作表,按照Orign 7.O软件绘制图形的步骤,选AddPlot to Layer,以2O位同学为一组,将所有学生实验所得的数据拟合在一张图表上。每条线上按照学生绘图时的标记进行排列。

3 评价学生实验和实验教学过程

教师绘制实验结果拟合图后,在规范的实验操作条件下,从图1可以看出图形重合性好,学生分析结果的误差较小;说明实验数据比较可靠的就是本次实验的标准值。利用相对平均偏差确立实验的上下控制图,如某一位学生实验数据偏离上下控制界线,需要进一步查找原因分析实验中的误差和偏差,及时进行纠正。如果20位同学的离散情况均符合实验要求,说明该学生实验准备工作,实验技巧,仪器试剂均正常。通过实验结果拟合图,确定了合理的评价标准;起到指导、促进学生做好实验的作用,使学生当场了解自已的实验结果,便于及时找出实验中存在的问题,更好的完成实验任务。

在现有的分析化学实验条件下。对学生的实验数据引人Orign 7.0软件进行处理;不仅能提高分析实验的准确性,使数据处理与标准曲线简单化,还能使学生掌握课程之外的一些数据处理技巧,拓展同学们的计算机应用能力,有助于综合素质的培养和提高。同时教师通过学生绘制的图形进行拟合,是决定学生实验数据取舍的最好标准和依据,并且容易对学生实验结果进行直观性评价;找出误差明显的学生,寻找脱离控制的原因。

参考文献:

[1] 华中师范大学,华北师范大学等.分析化学实验(第二版)[M].北京:高等教育出版社,2001,21,5.

[2] 贾文平,李芳.Orign 5.0/r分析化学实验教学中的应用[J].台州学院学报,2003,12,(25).

[3] 罗华军.Orign7.0在化工数值计算中的应用[J].安徽理工大学学报(自然科学版)2005,3,(25).

相关范文阅读
友情链接