发布时间:2023-10-12 17:42:58
绪论:一篇引人入胜的宏观经济分析研究,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。
中美贸易失衡问题,是双边经贸合作中的突出问题,而随着经济全球化的不断发展,这一问题愈演愈烈。中美经济交往顺利则能够有效推动全球经济进步。具体到中美贸易而言,当前美国是中国第二大贸易伙伴国,也是我国第一大出口贸易对象。对美国而言,中国是美国在全球的第二大贸易伙伴国,同时也是第一大进口来源地。中美两国双边贸易的进行情况已经展现双方贸易出现了较为严重的贸易失衡。而这一问题如果无法得到有效解决,将制约双方贸易进一步开展。而对中美贸易失衡问题进行有效研究,也能够从实质上优化中美贸易结构,推动中美贸易不断发展。
一、中美经济与中美贸易发展情况分析
中国经济与美国经济关系是全球经济关系中最重要的组成部分,也是全球经济不可分割的一部分。随着经济全球化发展加速,今天中国已经成为新的世界经济大国和重要经济增长点。而美国则是世界上经济结构最优、科技技术最先进的国家。中美两国强大的经济实力和强劲的经济发展水平都已经成为当今世界经济发展的主要助推力量,并在此基础上所形成的经济关系格局和地位已经成为影响当今世界经济关系和经济发展走向的重要因素。中美经济发展影响世界经济发展,而中美经济关系也是两国关系的基础。
在改革开放初期,中国对外经济主要依赖美国,至今天,中国已经形成了多元化的对外经济交往体系。而自2008年以来,美国率先爆发经济危机,受经济危机影响,美国经济实力有所下降。美国国内经济对全球经济影响力也逐渐下降。而在这一背景下,中国率先调整经济发展模式,并一直保持较高经济发展水平,同时进一步调整其经济政策,有效提升了中国在全球经济发展格局的地位。
中美经济发展存在极大互补性,这与中美两国经济发展情况有极大关系,美国经济发展水平高,经济结构基本上以第三产业为主,经济发展多依靠消费拉动。而中国则是在改革开放后迎来了发展的黄金期,国家经济发展结构主要以重工业为主,同时资源消耗型和劳动密集型产业较为普及。这就决定中国经济发展结构中,科技含量低、环境污染严重,而美国恰恰与中国相反,美国经济发展中,科技含量高,人力成本低更是成为美国经济发展的优点。中美两国经济发展结构现状就决定了中美两国经贸交往存在相应问题。中国出口大量产品,美国大量基础产品供给基本由中国完成,这就决定了中美贸易存在极大顺差,同时整个贸易结构和贸易现状极不平衡,这一系列问题就使的中美经济与贸易需要解决问题。
二、中美经济贸易摩擦与冲突分析
经济全球化不断发展,中美两国经济交往程度逐渐加深,这就使得中美两国经济发展相互依赖趋势更加明显。但中美经济贸易开展的基础和目的都是维护各国利益,这就使得中国经济发展与美国经济发展存在一定摩擦与冲突纷争。双方经济贸易的主要问题聚焦在双方不断扩大的贸易逆差额。而这一问题一直以来也未能得到有效解决,这就使得大多数美国民众普遍认为中美贸易逆差额的不断扩大不仅影响个人利益,直至威胁影响美国经济发展。
中美经济贸易确实存在矛盾,而这一矛盾是由于不平衡的进出口关系影响的。美国长期从中国进口大量物美价廉的劳动密集型、资源密集型的产品,这就使得美国大量基础工人失业,而中国主要从美国进口科技含量高的产品,但美国为了有效防止中国学习其科学技术,就限制对华出口产品类型和形式。一方面造成了中国,而另一方面也使得美国对华贸易额逆差持续扩大。尽管中国与美国经济贸易摩擦程度和涉及内容不断增加,但中美两国都在摩擦中获得了具体的宏观利益,维护并发展了自身利益。摩擦与冲突只是两国经贸关系中正常元素,并不能掩盖两国经济贸易往来水平不断加深这一事实。
中美经济贸易摩擦与冲突想要得到有效解决就离不开对两国经济发展状况的具体认识,不仅要认识两国经济贸易问题的具体差别,还要从深层次分析两国经贸冲突问题,要结合两国经济发展特点,结合两国经济发展政策,动态、辩证、唯物看待两国经贸交往。
三、宏观角度看中美经贸关系的主要特点分析
中国与美国经济发展无论存在极大互补,中国有着极其丰富的资源和人力,但缺乏技术和资金以及先进经验,而美国正好具备这些资源。中国两国的经济结构和国家发展形式就决定了两国有极强的合作互补特质以及互补空间。从产业结构上看,随着美国国内产业结构不断调整以及产业转移方针的不断实施,就需要选择一个满足其战略转移升级的国家和地区来解决这一问题。中美经济关系之所以出现贸易失衡,这与两国经济发展政策有关。中国经济以出口导向为主,而美国则是全球最大消费国。
其次,随着经济全球化不断发展,中美两国经济依赖程度逐渐加深。与初期中国单纯依赖美国经济发展不同,今天中美经济关系格局已经实现了质的变化。2008年,由于受全球经济危机的影响,美国经济对全球经济影响力已经逐渐下降。受全球经济危机影响,美国现有的经济发展模式受到质疑,同时美国为了摆脱全球经济危机带来的不利影响,积极调整经济结构,进一步降低利率,实施量化宽松发展的经济政策。而经过此次经济危机,中国经济依旧发展迅猛,这就极大改观了中国在全球经济格局中的地位。中国实施相对稳定的经济政策和国内较为平稳的经济发展态势,就使得美国在经济投资和市场拓展方面更依赖中国,中国已经成为美国国债的全球最大持有国。美国通过不断吸收外国资金,从而弥补本国经济发展不足,解决经济发展困局。因此随着发展,中美两国双边贸易问题,已经实现由中国单向依赖美国转变成为中美互相依赖。
最后,中美两国经济互利共生。全球化经济发展的今天,没有任何一个国家可以孤立存在,更没有哪一个市场可以在封闭的状态下,实现自身发展。各国经济发展之间,相互促进,互利共生状态更加明显,只有相互促进,互相借鉴和吸收,才能促进自身经济发展。而在经济全球化这一因素影响下,解决中美贸易失衡问题就必须认识到这是双边共性问题,只从单一方面考虑是远远不够的。两国经济相互融合,已经到了解决两国经济问题不能割裂看问题这一形势。美国在中国开设大量跨国企业,而中美合资也成立双边贸易常态问题。
四、结语
如今,随着经济全球化和中国改革开放步伐的不断加快,中国已经成为全球经济增长最为迅猛的国家,也是世界上最大的发展中国家。而美国依旧是经济实力最雄厚的国家,同时也是全球最大的发达国家。中美两国是全球最大的经济综合体之一。可以说中美两国的经济发展状况对全球经济发展有着极大影响力。解决中美贸易失衡问题,就要从两国经济发展的实质问题入手,切实结合两国经济发展战略和发展规划,切实可行的推动经济交往。而在认识两国经济贸易摩擦问题上,也要充分认识到两国经济贸易摩擦是正常现象,不能只看到两国经济贸易的摩擦和冲突,而看不到两国经济发展的互补性。(作者单位:工商银行天津河东支行)
一、前言
基于互联网经济时代背景下,计算机技术的广泛运用促使数据信息能够得到有效的收集与处理,但随着计算机网络体系的逐步完善,面对海量信息数据,如何实现对数据的高效快捷处理,以实现对信息资源的充分利用,成为各行业领域所面临的一大挑战。在此背景下,大数据技术的应运而生,为实现对这一问题的有效解决提供了出路,对于宏观经济分析而言,同样离不开大数据的支撑,因此,这就需要针对宏观经济分析之需,实现对大数据的完善运用。
二、在宏观经济分析中大数据所呈现出的价值
主要表现在如下两方面:第一,提供更加全面的数据信息。对于宏观经济分析而言,因所分析的内容多且广,加上会受到诸多因素的影响,进而使得在实际开展这一工作的过程中,因数据信息的不全面、获取信息的时效性低等,使得宏观经济分析的结果缺乏科学性。而将大数据进行运用,则能够借助计算机网络技术的支撑,实现对数据实时动态获取,并以丰富数据的获取来支撑该项分析工作得以实现高质高效落实。第二,丰富了分析方法。在传统宏观经济分析中,主要财通的方法为统计分析模型,借助抽样分析法来获得样本数据,并以此来作为整体,进而使分析结果难以与事实相符;而借助大数据技术的运用,则能够借助海量数据信息的获取,以计算机为支撑来实现对数据信息的自动分析,进而以总体分析法来提升分析结果的可靠性。第三,分析技术水平得以提高。在实施大数据分析的过程中,离不开计算机技术的支撑,借助结算及技术的运用则能够以多种分析模型的搭建与多种识别技术的融入,来取代大部分人工分析工作,以技术的全面支撑来提高分析的准确性与效率性。
三、基于大数据时代下宏观经济分析所迎来的机遇与面临的挑战
1.机遇
在大数据时代下,大数据技术的融入使得该项分析工作的开展能够获得丰富数据支撑,并以相应分析方法与分析技术的创新,为提升宏观经济分析的效率与质量奠定了基础。从所迎来的机遇角度看,对于宏观经济分析而言,借助大数据的融入,能够实现对海量信息的实施动态化获取,进而提升了信息获取能力,同时,借助智能化获取与分析的实现,能够为实现准确的预测分析奠定基础,同时,也在降低分析人员工作压力与难度的基础上,提升了分析的效率,为充分实现宏观经济分析的作用与价值提供了保障。
2.所面临的挑战
机遇与挑战并存,对于宏观经济分析工作的实际开展而言,同样面临着巨大的挑战,具体而言:第一,在互联网时代下,信息的传播打破了时间与空间的束缚,面对海量信息数据,对于该项分析工作的实际开展而言,要想能够从中选取中有价值的信息,且能够充分服务于该项工作的实际开展之需,难度极大;第二,在运用计算机网络技术的过程中,需要确保数据信息的安全,但是,从数据安全保障工作开展的实际状况看,相应能力还有待进一步提升;第三,在运用大数据来开展宏观经济分析工作,需要确保具备完善的专业人才队伍,进而才能够为充分发挥出大数据的作用与价值提供保障,但目前现有行业专业人才匮乏,难以满足该项工作的实际开展之需,进而使得大数据的价值与作用无法得到充分实现。
四、充分发挥大数据在宏观经济分析中价值与作用的对策
大数据技术为当前宏观经济分析工作得以实现顺利且高效开展提供了技术支撑,但是,从目前运用大数据的实际状况看,一系列挑战的存在,使得大数据难以实现作用的充分发挥,因此,这就需要结合实际所存在的问题,落实针对性的解决措施:
1.营造良好的发展环境
要想促使大数据能够在该项工作中得到充分且完善运用,首先就需要从大数据运用的宏观环境着手,因此,这就需要充分发挥出政府的作用。在实际践行的过程中,政府要充分发挥出自身的主导作用,以大数据收集体系的完善打造为基础,并针对经济发展的重点领域,实现相应数据收集工作的有计划落实,进而才能够为宏观经济分析工作实现顺利开展提供基础性前提。具体而言:一方面,政府相关部门要进一步提升对大数据的重视程度,针对大数据给该项工作的开展所带来的优势作用进行全面分析,在此基础上,从政策、资金等多方面加大对实施大数据的支撑力度,进而为实现大数据网络环境的打造奠定基础。另一方面,要加大对相关科研领域的重视程度,加大投入力度,确保相应研究机构能够为实现大数据的进一步发展提供支撑。此外,对于政府而言,为了能够促使大数据在宏观经济分析领域中实现充分运用,可鼓励企业积极践行信息化该该,进而以企业全面信息化管理的实现,为大数据的应用与发展创造良好发展空间与环境。
2.加大对数据采集与管理的力度
对于宏观经济分析工作的实际开展而言,需要以大数据的完善采集为支撑,并加强对数据信息的管理力度,进而才能够为实现大数据价值的充分发挥奠定基础,因此,在实际践行的过程中,需要以完大数据采集与管理体系的搭建为支撑。从实际该项工作工作开展的现状看,由于人员能力素质不足、技术水平偏低以及管理漏洞的存在等,使得难以充分发挥出大数据的优势作用,而要想实现对这些问题的解决,则就需要针对大数据采集流程,以完善采集体系的制定为支撑,促使在开展宏观经济分析工作的过程中,能够具备全面数据信息;同时,要加大对相应企业与个人,加大管理力度,制定完善的监管体系,针对不配合行为加大惩处力度,进而为实现数据信息采集工作的顺利开展奠定基础,此外,加大对相关人员的培训力度,促使其能够具备与之相适应的技能水平,以实现对大数据技术的规范且合理运用。
3.加大专业人才的培养力度
在借助大数据来开展宏观经济分析工作的过程中,由于行业专业人才匮乏,进而给该项工作的开展带来了极大的阻力,因此,这就需要加大对行业人才的培养力度。在实际践行的过程中,对于政府相关部门而言,需要以专项人才培养政策的制定与实施为基础,促使全社会能够提高对该领域人才培养工作的重视程度。同时,高校作为培养专业人才的主要阵地,应结合当前该行业领域对人才所提出的实际要求与需求,以相关专业的开设为基础,实现专业课程体系的完善打造,进而来满足社会对人才的实际需求。此外,对于企业而言,要针对大数据管理人员,加大培训教育力度,以提升其专业能力与信息化技能素养,为该项工作得以顺利开展提供有效支撑。
五、总结
综上,基于大数据时代背景下,对于宏观经济分析工作的实际开展而言,需要在明确大数据在该项工作中所呈现出的价值与作用的基础上,明确大数据所带来的优势,并针对在运用大数据于该项工作中所存在的问题,实现有针对性解决对策的落实。具体而言,要针对大数据的运用营造良好的环境,并在加大对大数据采集与管理力度的基础上,加强对专业人才的培养力度,进而为充分实现大数据运用于宏观经济分析中的价值并提升该项工作的效率与质量提供保障。
参考文献:
[1]徐寅.论大数据时代背景下宏观调控决策的法治化[J].学术探索,2014,11:51-55.
[2]申红艳,吴晨生,铁梅,滕飞.大数据时代宏观经济分析面临的机遇与挑战[J].经济研究参考,2014,63:19-25.
大数据方法和技术不仅可以被深度地应用在微观分析、行业研究领域,也可以运用在宏观决策之中。未来,大数据既是企业占领市场、赢得机遇的利器,也是政府进行宏观调控、国家治理、社会管理的信息基础。而大数据时代对数据的挖掘、处理和分析的方式,对于传统的宏观经济分析,无疑是一次大的革新。
大数据应用于宏观经济分析的趋势
传统的宏观经济分析通常是通过对比主要宏观经济指标、建立宏观经济计量模型、仿真宏观经济动力系统,对宏观经济形势及未来发展趋势进行判断与预测。
在当前的大数据时代,越来越多的宏观经济政策制定者和相关专家学者都已经意识到,大数据对宏观经济分析有着革命性的影响。目前,在宏观经济分析及预测中运用大数据方面,无论是国外还是国内,从新型宏观经济指数构建,到建立新型大数据宏观经济预测模型,各方面都取得了一定的进展。
早期大数据在宏观经济分析领域的应用,主要集中在建立新的宏观经济指数,以便更加准确的反应宏观经济运行状况。这方面的工作主要基于个人的交易记录,包括像一些欧洲国家将销售点扫描数据纳入CPI指数编制。
特别引起关注的是麻省理工学院的经济学家利用网上购物交易数据创建的BBP项目 (Billion Prices Project),基于不断变化的一篮子商品所计算的日度通胀指数。这种实时的通货膨胀指数能够比相应的官方数据更好地反映实际经济运行的情况。当年,在雷曼兄弟公司倒闭后,BPP 的数据显示,大部分美国企业几乎立刻开始削减价格,这就表明总需求已经减弱。而相比之下,官方通胀机构公布的数据直到当年11月,即在10月CPI数据公布后,才对通货紧缩有所反应。
“企业发展工商指数”是宏观经济分析领域中典型的大数据应用案例,也是我国政府在大数据挖掘领域的首创成果。该指数包括10 个对宏观经济具有显著先行性的指标,可以提前1~2 个季度预测宏观经济发展趋势。它改变了传统的抽样统计方式,利用大数据挖掘技术,对工商全量、动态的全国企业登记数据进行分析,发掘大数据价值,并采用合成企业发展工商指数,以判断宏观经济走势。
除了宏观经济分析与预测方面相关指数的建构,从宏观经济分析与预测研究的国际趋势看,使用大数据集,建构监测预测的模型,进行经济预测越来越广泛,逐渐成为很多国家央行进行经济预测的新方法和新工具。
在应用互联网大数据进行经济分析及预测中,使用网络搜索引擎或网络社交媒体记录的关键词,会有数据获取及时、样本统计意义明显等优势,预测精度较高。
Google Trends每天都在产生大量与经济发展相关的查询结果,且这些查询结果与当下的经济活动之间必然存在着不容忽视的关系,或许可以对预测当下的经济活动起到非常重要的作用。并且,在此基础上,Choi H. &. Varian H.(2016)举例说明了如何利用Google Trends预测美国零售业、汽车、住房和旅游的销售情况。
还有相关机构引用专业数据分析软件公司SAS的研究数据,以社交网络活跃度增长作为失业率上升的早期征兆,帮助政府判断就业形势和经济状况,以更好地制定经济政策。在社交网络上,网民们更多地谈论“我的车放在车库已经快两周了”、“我这周只去了一次超市”这些话题时,显示网民可能面临巨大的失业压力;当网民开始讨论“我要出租房屋”、“我准备取消度假”这些话题时,显示出这些网民可能已经失业,面临巨大的生存压力,这些指标是失业后的滞后标志性指标。
样本统计转为总体普查
大数据的发展对于宏观经济分析最为显著的积极影响,莫过于使宏观经济分析从样本统计时代走向总体普查时代。大数据时代的宏观经济分析中,传统的样本假设方式被抛弃,转而以真实的海量数据来进行计算机的自动分析。
我们知道,传统的经济分析包括经济计量分析是建立在抽样统计基础之上的,在传统的抽样统计分析中,往往以假设检验为基本模式,依靠的数据主要是样本,将样本假设为整体,然而,这种分析往往与事实存在或多或少的出入。
与传统宏观经济分析总是局限于小规模样本数据有所不同,在大数据时代,随着信息覆盖范围和数据量迅速提升,数据样本的体量会极大地提高,甚至可以达到样本即总体的程度。例如,就物价而言,每一笔在电子商务网站成交的交易信息都能记录在案。这样的情况下,宏观经济分析的可靠性必然大大加强。
同时,随着信息量的极大拓展和处理信息能力的极大提高,使得宏观经济的分析不再局限于传统的统计分析模式,而是将抽样分析转变为总体分析。这一点对宏观经济分析意义重大,因为宏观经济系统纷繁复杂,如果能将对整体宏观经济变量的分析建立在尽可能多的关于经济主体行为的信息以及其他诸多经济变量的信息的基础上,无疑将会极大地提高宏观经济分析的准确性。
基于推特(Twitter)平台表达的公共情绪用来预测股市变动,是很典型的例子。2008年3月到12月长达九个月间,270万Twitter用户推送的多达970万条的消息,经过情绪评估工具――Opinion Finder 和GPOMS 被分别赋值并评估为“积极”与“消极”两种情绪和“calm(冷静)”、“alert(警觉)”、“ sure(确信)”、“vital(活泼)”、“kind(美好)”、“happy(高兴)”六种情绪。结果发现,在道琼斯工业平均指数和GPOMS中的“calm(冷静)”情绪之间存在相关性。进一步研究发现,“calm(冷静)”情绪可以很好地预测道琼斯工业平均指数在未来2到6天的涨跌情况,而且这种每日预测的准确率高达到87.6%。
大数据时代,可获得大而全的可得数据,甚至可抛弃原有的假设检验的模式,这些优势是传统经济分析方法无法想象和实现的,无疑将会极大地提高宏观经济分析的准确性和可信度,不仅可以更加准确了解宏观经济形势,还有利于正确做出宏观经济发展的预测,从而更加合理地制定宏观经济政策。
变量个数无限增多
在当前大数据时代,数据的可得性和多样性导致样本量无限增大,同时变量个数无限增多,这有利于应用大量模型进行研究,并应用完备的数据信息,提高预测的准确性。
经济预测模型可以分为两类:一是传统的小模型预测,这类模型往往通过建立时间序列、横截面或面板方程来进行经济分析。传统的小模型预测的特点是仅使用较少的变量,像VAR模型的变量个数通常小于10个。二是大模型预测,这类模型往往使用成百上千个变量,因而大模型预测利用的信息非常丰富。
小模型预测理论比较成熟、方法相对简单。但是,小模型预测有天然的缺陷,那就是变量的完整通常是不可能的,而预测的效果受限于其所使用的变量。
使用小模型进行预测时必须仔细挑选预测变量,然而仁者见仁智者见智,无论是根据理论还是根据经验进行变量的选择,其过程必然会存在差异,其结果也更是可想而知,而且甚至会产生一些争议。比如,基于菲利普斯曲线预测通胀时,有的研究使用失业率作为预测变量,也有研究使用GDP缺口或者产能利用率。
清华大学经济学研究所所长刘涛雄教授就指出,由于模型变量选择、参数设置、估计方法以及滞后期选择等的不同,预测结果会产生很大的偏差。
小模型预测方法这一天然的局限是很难调和的,主要是因为数据样本有限而导致增加很多变量不可行。这使小模型预测的结论往往和经济现实严重脱节。我们很难想象中央银行会仅仅根据少数几个变量进行宏观预测,并据此做出决策。即便是一家企业也不会如此草率。
通过大数据挖掘,可以使得变量大大增加。这就为经济预测从小模型预测转变为大模型预测创造了条件,应用大量模型进行分析及预测,可以应用完备的数据信息,从而提高预测的准确性。
在美国,银行通常依靠FICO得分做出贷款与否的决定,FICO分大概有15-20个变量,诸如信用卡的使用比率、有无未还款的记录等。而一家名为ZestCash的金融机构,在决定是否向客户放贷的时,分析的却是数千个信息线索。ZestCash正是依靠其强大的对于大数据的处理和分析能力,形成了其独特的核心竞争力。
未必因果关系 而是相关关系
传统的经济计量分析以寻找相关事物(变量)的因果关系为核心,而大数据条件下的经济分析通常则着眼于挖掘相关事物(变量)的相关关系。
在复杂的宏观经济系统中,许多经济变量的因果关系往往难以准确检验,或者因果结论经常广受质疑。然而,在如今的大数据时代,更加重视可靠相关关系的发掘,并且充分利用相关关系对于经济预测、经济政策制定与评估的作用,则无疑为宏观经济分析打开了另一片广阔的空间。
在“小数据”时代,宏观经济中的因果关系分析其实并不容易,耗费的精力大、时间多。特别是,要从建立假设开始,进而不断地进行一系列假设的实验,而一个个假设要么被证实,要么被。不过,无论被证实还是被,由于二者都始于假设,这些分析就都有受偏见的可能,所以极易导致错误。
同时,由于计算机能力的不足,在小数据时代,大部分相关事物(变量)关系的分析局限于寻求线性关系。然而,实际上的情况要复杂得多,在现实宏观经济中,总能够发现的是相关事物(变量)的“非线性关系”。
当然,在小数据世界的宏观经济分析中,相关关系也是存在并有价值的;不过,在大数据时代的宏观经济分析中,相关关系才将大放异彩。维克托・迈尔-舍恩伯格与肯尼思・库克耶(Victor?Mayer-Schonberger &. Kenneth?Cukier)认为,建立在相关关系分析基础上的预测是大数据的核心。通过应用相关关系,可以比之前更容易、更快捷、更清楚地分析事物(变量)。
英国华威商学院为预测股市的涨跌,使用谷歌趋势(Google Trends)共计追踪了98个搜索关键词。这中包括“债务”、“股票”、“投资组合”、“失业”、“市场”等与投资行为相关的词,也包括“生活方式”、“艺术”、“快乐”、“战争”、“冲突”、“政治”等与投资无关的关键词。结果发现有些词条,诸如“债务”,成为预测股市的主要关键词。
“谷歌流感趋势”为预测季节性流感的暴发,对2003年和2008年间的5000万最常搜索的词条进行大数据“训练”,试图发现某些搜索词条的地理位置是否与美国流感疾病预防和控制中心的数据相关。
谷歌并没有直接推断哪些查询词条是最好的指标,相反,为了测试这些检索词条,谷歌总共处理了4.5亿个不同的数字模型。将得出的预测与2007年和2008年美国疾控中心记录的实际流感病例进行对比后,谷歌公司发现,它们的大数据处理结果发现了45条检索词条的组合,将它们用于特定的数学模型,预测结果与官方数据的相关性高达97%。
在大数据时代来临之前,尽管相关关系已被充分证明大有用途,可是相关关系的应用很少。这是因为用来做相关关系分析的数据同用来做因果关系分析的数据一样,也很少,也不容易得到,并且收集有关的数据,在过去相对来说,也费时费力,也会耗资巨大。不过现如今,可用的数据如此之多,也就不存在这样的难题了。特别是现在,有关专家们正在研发能发现并对比分析“非线性关系”的必要工具。总之,一系列飞速发展的新技术和新软件从多方面提高了有关分析工具发现宏观经济变量相关关系的能力,这就好比立体画法可同时从多个角度来表现人物或事物。
在大数据时代,这些新的分析工具和思路为我们提供了一系列新的视野和有用的预测,使我们看到了很多以前不曾注意到的宏观经济中的联系,掌握了以前无法理解的复杂的国民经济动态。
时滞变即期
目前对宏观经济的分析研究所采用的资料,主要依赖于各种统计调查系统的统计数据,但面临的最明显的缺陷之一便在于关于宏观经济统计的数据具有很强的时滞性。而大数据经济模型可以充分利用数据的实时性,提高分析或预测的时效性,为经济预警和政策制定提供最快速的资料和依据。
一般来说,依赖统计部门的宏观经济数据的都存在时间滞后的问题。由于不能及时获取宏观经济发展的数据信息,也就不能对当下的宏观经济形势作出准确判断。例如,政府公布的季度GDP 往往会有1个月的滞后期,而反映全面经济社会状况的统计年鉴的滞后期会达到3个月左右,这对及时了解宏观经济形势、预测与预警都是非常不利的,基于此统计进行的预测甚至被认为助长了宏观经济波动。
在互联网技术的辅助下相关宏观经济的分析部门能够快速地收集到主要宏观经济发展数据,如全社会的用电量、全社会的商品销售总额以及商品房的购买量等。这些大数据的获取时间较短,有的数据甚至是立即可以获得。
而随着互联网尤其是移动互联网的发展,产生了大量的即时传播数据,如企业通过微博、微信第一时间产品、人事等重要信息; 普通用户实时针对特定事件或对象发表见解和态度,等等。
这些即时传播的非结构化数据对宏观经济的走势也产生了重要影响。通过大数据软件处理平台,可以实时追踪和搜集这些即时数据,并快速对数据进行分析和处理,从而提高宏观经济的时效性,为经济活动参与者赢得决策时间。