首页 公文范文 证券投资决策

证券投资决策汇编(三篇)

发布时间:2023-09-21 10:01:52

绪论:一篇引人入胜的证券投资决策,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

证券投资决策

篇1

中图分类号:F83 文献标识码:A

收录日期:2014年7月25日

一、背景介绍

投资决策问题一直都是经济领域的热门问题之一,众多学者利用不同的研究方法在投资决策问题上得到了大量研究成果。例如,钱进(1990)通过全局最优的方法研究投资决策问题。宋军等(2003)建立了一种极小化跟踪投资回报率与目标回报率偏差的多阶段投资决策模型,并将随机模拟、遗传算法和神经网络集成在动态规划之中,设计给出了一种智能化求解方法。卫淑芝(2010)讨论了资产价格在宏观经济以及金融等因素影响下,含有可违约风险债券的连续时间风险敏感度投资决策问题。但是,随着经济的迅速发展,当前的投资决策问题依然面临着巨大的挑战,尤其在不确定性因素的处理方面更显突出。

为了处理投资决策中的各种不确定性因素,众多学者应用随机方法和模糊方法对投资问题进行了大量的研究。本文将主要从模糊优化的角度来研究投资决策问题。自从美国控制论专家Zadeh(1965)提出模糊集理论以来,模糊模型及相应算法得到了迅速发展。期间,Liu和Liu(2002)提出了可信性测度的概念并有效地丰富了现有模糊优化理论。经过十多年的发展,可信性理论已经在社会众多领域得到了广泛的应用。袁国强(2009)基于可信性理论提出了三类模糊生产计划模型并设计了相应的算法对模型进行了求解。鉴于可信性理论地广泛应用,本文首先将基于可信性理论提出一类新的带有模糊约束的投资决策模型;然后,通过模型的性质将模糊投资决策模型转化为线性规划模型;最后,给出一个具体的证券投资决策问题例子来表明所设计模型的实用性。

二、带有模糊约束的投资决策模型

在本文的以下讨论中,假设采用下面的指标和参数。

i=1,2,…,n:投资有价证券的数量;

Ai:第i种有价证券;

ai:第i种有价证券的信用等级;

bi:第i种有价证券的到期年限;

ci:第i种有价证券的到期税前收益率;

xi:投资第i种有价证券的金额;

k:在n种有价证券中选出固定投资的m种有价证券至少所需投资的金额总数;

K:投资者现有的投资金额总数;

a:投资者可以接受的所购证券的平均信用等级;

b:投资者可以接受的最高所购证券的平均到期年限。

使用上面的记号,为了得到带有模糊参数的投资决策模型,本文首先建立以下带有确定性参数的投资决策模型:

maxcixi

s.t. xi≥k

xi≤K (1)

aixi≤axi

bixi≤bxi

xi≥0,i=1,2,…,n

这里,约束条件xi≥k表示在需要投资的证券中选出m种证券,使得这些证券的投资总额不少于k;xi≤K表示需要投资证券的总金额数不超过K;bixi≤bxi表示投资者所购证券的平均到期年限不超过b。

在确定性模型(1)中,约束条件aixi≤axi表示投资者所购证券的平均信用等级不超过a。由于有价证券的投资受到各种不确定性因素(例如,银行利率、信用风险、交易风险、操作风险和市场风险等)影响,从而要求投资者在有限的信息条件下要想得到最大的投资利润就必须合理地对各种投资风险进行妥善处理,所以本文将信用等级看作离散型模糊变量,即模糊信用等级ai(?酌)(i=1,2,…,n)。因此,通过以上引入的模糊系数可以建立下面带有模糊参数的投资决策模型:

maxcixi

s.t. xi≥k

xi≤K (2)

Cr?酌ai(?酌)xi≤axi≥0.8

bixi≤bxi

xi≥0,i=1,2,…,n

由于以上模糊投资决策模型(2)的模糊约束中的可信性水平是0.8,所以根据Bai等(2009)中的相关理论可以将模型(2)转化为下面的线性规划模型:

maxcixi

s.t. xi≥k

xi≤K (3)

[ai(?酌)]R0.4xi≤axi

bixi≤bxi

xi≥0,i=1,2,…,n

这里,[ai(?酌)]R0.4表示sup{t?滋(t)≥0.4},并且由于模型(3)是一个经典的线性规划问题,从而可以采用经典的线性规划算法进行求解。

三、带有模糊约束的证券投资决策实例

下面将给出一个证券投资决策问题的例子来说明上述模糊投资决策模型的实用性。这里,假设某投资者计划用2,000万元资金进行5种有价证券的投资,并且可供购进的证券、信用等级、到期年限、到期税前收益如表1所示。(表1)

基于以上的数据,下面建立带有模糊约束的证券投资决策模型:

maxcixi

s.t. x2+x4+x5≥800

xi≤2000 (4)

Cr?酌ai(?酌)xi≤1.3xi≥0.8

8x1+14x2+4x3+3x4+3x5≤5xi

xi≥0,i=1,2,…,5

这里,要求第2种、第4种和第5种证券至少要购进800万元;所购证券的平均模糊信用等级不超过a=1.3;所购证券的平均到期年限不超过b=5年。根据模型(2)和模型(3)的转化可以得到下面的线性规划模型:

max 0.043x1+0.03x2+0.033x3+0.025x4+0.023x5

s.t. x2+x3+x4≥800

xi≤2000 (5)

2.1x1+2.2x2+x3+x4+4x5≤1.3xi

8x1+14x2+4x3+3x4+3x5≤5xi

xi≥0,i=1,2,…,5

本文利用Lingo软件对模型(5)进行求解,最后得到模型(5)的最大收益值为65.06636万元,最优解为第1种证券投资546.6364万元;第3种证券投资653.3636万元;第4种证券投资800万元。

主要参考文献:

[1]钱进.全局最优投资决策问题和方法[J].中南财经政法大学学报,1990.3.

[2]宋军,唐万生,张莉.多阶段投资决策问题的一种智能化求解方法[J].系统工程,2003.2.

篇2

投资是企业重要的财务活动之一,它通常是指企业将一定的财力和物力投入到一定的对象上,以期在未来获取收益的经济行为。投资活动可以按多种标准进行分类,其中按投资方式的不同可分为直接投资和间接投资,直接投资又称为实物投资,是指直接用现金、固定资产、无形资产等进行投资,直接形成企业生产经营活动的能力。直接投资往往数额大,回收期长、与生产经营联系紧密。

间接投资一般也称为证券投资,是指用现金、固定资产、无形资产等资产购买或取得其他单位的有价证券(股票、债券等)。

固定资产投资的规模大小和技术的先进程度、证券投资的规模大小和投资对象的合理性,在很大程度上决定了企业经营和发展的潜力,因此,对固定资产投资和证券投资决策方法的研究和使用对企业的生存和发展都具有十分重要的意义。

一、固定资产投资决策

1、固定资产投资决策方法。如前所述,固定资产投资直接影响企业的生产经营规模,由于它投资数额大、投资回收期长、一经决策和实施就难以改变,因此固定资产投资决策成败与否后果深远。实务中,企业在进行固定资产投资决策时,一般都要提出几种投资方案,进行反复比较后从中选取最佳或最合理的方案,这就需要运用净现值法、内含报酬率法、现值指数法、投资回收期法、平均报酬率法等投资决策方法,但现行财务管理理论和实践对固定资产投资主要采用净现值(简称NPV)法。所谓净现值是指投资方案的未来现金流人量的现值和现金流出量的现值的差额。用公式可表达为:

NPV=∑CIt/(1+i)t—∑COt/(1+i)t

其中:CIt表示第t年的现金流入量;COt表示第t年的现金流出量;i表示预定的折现率。

净现值法的决策规则是:在只有一个备选方案的采纳与否决策中,净现值为正者则采纳,净现值为负者不采纳;在有多个备选方案的互斥选择决策中,应选用净现值是正值中的最大者。

2、对固定资产投资决策方法的说明。不难发现,净现值法与其他方法相比具有以下优点:

(1)净现值法考虑了资金的时间价值,能够反映各种投资方案的净收益,即以各种投资方案收益的大小作为投资决策的依据,因此是一种较好的方法。

(2)净现值法与企业的财务管理目标相一致。投资方案的净现值就是该方案能够给企业增加的价值,因此要实现企业价值最大化这一目标,就必须在多种备选方案中选择净现值最大且不小于零的投资方案。

因此,现行企业财务管理工作中主要采用净现值法进行固定资产的投资决策。

二、证券投资决策

1.证券投资决策方法。证券投资决策的目标就是将投资收益和投资风险风险联系起来,对二者进行权衡后选择最为合理的证券进行投资。因此,证券投资决策主要是讨论如何在规避风险的基础上最大限度地获取证券投资收益,这就是著名的投资组合理论。投资组合理论最初由马考维茨(HMarkowitz)于20世纪50

年代创立,后经威廉•夏普(WSharpe)等人发展,主要运用证券投资回报率的期望值E和系统风险系数β两个指标表示一个证券(或证券组合)的投资价值,以此为基础的分析被称为“E—β”分析。

证券投资组合的风险可以分为两种性质完全不同的风险,即系统风险和非系统风险。系统风险又称为不可分散风险或市场风险,是由于一些会影响到所有公司的因素如战争、通货膨胀、经济衰退、金融危机、国际市场的变化引起的风险。这些因素对任何企业来说,都是不可避免的;非系统风险又称为可分散风险或公是指发生于个别公司的因素如新产品开发失败、失去一项重要合同、重大项目投标的失败、竞争对手的出现、生产工艺技术的老化等所造成的风险,此类风险可以通过多元化的投资来分散或消除。

2.对证券投资决策方法的说明。资本市场理论和实践研究表明,证券的回报率和系统风险之间存在着很高的相关性,即风险与收益对等,高风险可以用高回报来补偿,而低风险则伴随着低回报。在完全有效的资本市场中,证券的价格反映其价值,证券的价格在任何时刻都应与其价值相符,因此购买或出售证券只能获得与该证券的系统风险相一致的回报率。也就是说,证券投资的净现值等于零。因此证券投资决策不能用净现值作为评价指标,而应采用“E—β”分析法。

综上所述,对固定资产投资与证券投资决策方法的差异归纳为以下几点:

(1)现行企业财务管理理论和实践对固定资产投资决策主要采用净现值(NPV)法,而对证券投资决策则采用回报率与风险(E—β)分析法。

(2)只有当固定资产投资方案的净现值不小于零时,才有可能接受该方案,而证券投资方案的净现值一般为零。

(3)由于证券市场的竞争性远远高于产品市场,使得证券市场能够迅速达到竞争性均衡状态,因此,证券投资的平均租金高于零;而产品市场或者因为存在垄断和寡头,或者因为某个或某些企业的创新而使得该行业调整到竞争性均衡状态还需要一定的时间,所以固定资产投资可以赚取经济租金。

三、原因分析

1.从资本资产定价模型的角度来看。上面的分析似乎表明固定资产决策和证券投资决策是两种截然不同的决策类型,其实并非如此,两者实际上都使用资本资产定价模型来量化风险。

威廉•夏普1964年开创的资本资产定价模型(CapitalAssetPricingModel,简称CAPM)被认为是财务管理学形成和发展中最重要的里程碑,它的出现第一次使人们能够对风险进行定量分析。这一模型为:

Kj=Rf+βj(Km—Rf)。

式中:Kj表示第j种股票或第j种证券组合的必要报酬率;Rf代表无风险报酬率;βj表示第j种股票或第j种证券组合的β系数;Km表示所有股票或所有证券的平均报酬率。

可见,资本资产定价模型简单、直观地揭示了证券的期望报酬率与风险之间的关系。

例:当前的无风险报酬率为6%,市场平均报酬率为12%,A项目的预期股权现金流量风险大,其值β为1.5;B项目的预期股权现金流量风险小,其β值为0.75,则:

A项目的必要报酬率=6%+1.5×(12%—4%)=18%

B项目的必要报酬率=6%+0.75×(12%—4%)=12%

因此,资本资产定价模型是证券投资分析的直接工具,应用资本资产定价模型可以直接预测证券投资组合的期望报酬率;而在固定资产投资决策中,资本资产定价模型同样发挥作用,即可以用于估计固定资产投资方案的机会成本,固定资产投资方案的风险越大,资金的机会成本也就越大。如果固定资产投资方案的净现值大于零,就说明该固定资产投资方案的期望报酬率大于资金的机会成本。

因此,无论是固定资产投资决策还是证券投资,资本资产定价模型都是一个有效的工具,所不同的是,在证券投资决策中,资金的机会成本就是该证券投资的期望报酬率;在固定资产投资决策中,用估计的资金机会成本作为折现率对固定资产投资方案的预期现金流量进行折现,计算其净现值,并根据计算结果的大小对投资方案作出取舍。

篇3

投资是企业重要的财务活动之一,它通常是指企业将一定的财力和物力投入到一定的对象上,以期在未来获取收益的经济行为。投资活动可以按多种标准进行分类,其中按投资方式的不同可分为直接投资和间接投资,直接投资又称为实物投资,是指直接用现金、固定资产、无形资产等进行投资,直接形成企业生产经营活动的能力。直接投资往往数额大,回收期长、与生产经营联系紧密。

间接投资一般也称为证券投资,是指用现金、固定资产、无形资产等资产购买或取得其他单位的有价证券(股票、债券等)。

固定资产投资的规模大小和技术的先进程度、证券投资的规模大小和投资对象的合理性,在很大程度上决定了企业经营和发展的潜力,因此,对固定资产投资和证券投资决策方法的研究和使用对企业的生存和发展都具有十分重要的意义。

一、固定资产投资决策

1、固定资产投资决策方法。如前所述,固定资产投资直接影响企业的生产经营规模,由于它投资数额大、投资回收期长、一经决策和实施就难以改变,因此固定资产投资决策成败与否后果深远。实务中,企业在进行固定资产投资决策时,一般都要提出几种投资方案,进行反复比较后从中选取最佳或最合理的方案,这就需要运用净现值法、内含报酬率法、现值指数法、投资回收期法、平均报酬率法等投资决策方法,但现行财务管理理论和实践对固定资产投资主要采用净现值(简称NPV)法。所谓净现值是指投资方案的未来现金流人量的现值和现金流出量的现值的差额。用公式可表达为:

NPV=∑CIt/(1+i)t—∑COt/(1+i)t

其中:CIt表示第t年的现金流入量;COt表示第t年的现金流出量;i表示预定的折现率。

净现值法的决策规则是:在只有一个备选方案的采纳与否决策中,净现值为正者则采纳,净现值为负者不采纳;在有多个备选方案的互斥选择决策中,应选用净现值是正值中的最大者。

2、对固定资产投资决策方法的说明。不难发现,净现值法与其他方法相比具有以下优点:

(1)净现值法考虑了资金的时间价值,能够反映各种投资方案的净收益,即以各种投资方案收益的大小作为投资决策的依据,因此是一种较好的方法。

(2)净现值法与企业的财务管理目标相一致。投资方案的净现值就是该方案能够给企业增加的价值,因此要实现企业价值最大化这一目标,就必须在多种备选方案中选择净现值最大且不小于零的投资方案。

因此,现行企业财务管理工作中主要采用净现值法进行固定资产的投资决策。

二、证券投资决策

1.证券投资决策方法。证券投资决策的目标就是将投资收益和投资风险风险联系起来,对二者进行权衡后选择最为合理的证券进行投资。因此,证券投资决策主要是讨论如何在规避风险的基础上最大限度地获取证券投资收益,这就是著名的投资组合理论。投资组合理论最初由马考维茨(H Markowitz)于20世纪50

年代创立,后经威廉夏普(W Sharpe)等人发展,主要运用证券投资回报率的期望值E和系统风险系数β两个指标表示一个证券(或证券组合)的投资价值,以此为基础的分析被称为“E—β”分析。

证券投资组合的风险可以分为两种性质完全不同的风险,即系统风险和非系统风险。系统风险又称为不可分散风险或市场风险,是由于一些会影响到所有公司的因素如战争、通货膨胀、经济衰退、金融危机、国际市场的变化引起的风险。这些因素对任何企业来说,都是不可避免的;非系统风险又称为可分散风险或公是指发生于个别公司的因素如新产品开发失败、失去一项重要合同、重大项目投标的失败、竞争对手的出现、生产工艺技术的老化等所造成的风险,此类风险可以通过多元化的投资来分散或消除。

2.对证券投资决策方法的说明。资本市场理论和实践研究表明,证券的回报率和系统风险之间存在着很高的相关性,即风险与收益对等,高风险可以用高回报来补偿,而低风险则伴随着低回报。在完全有效的资本市场中,证券的价格反映其价值,证券的价格在任何时刻都应与其价值相符,因此购买或出售证券只能获得与该证券的系统风险相一致的回报率。也就是说,证券投资的净现值等于零。因此证券投资决策不能用净现值作为评价指标,而应采用“E—β”分析法。

综上所述,对固定资产投资与证券投资决策方法的差异归纳为以下几点:

(1)现行企业财务管理理论和实践对固定资产投资决策主要采用净现值(NPV)法,而对证券投资决策则采用回报率与风险(E—β)分析法。

(2)只有当固定资产投资方案的净现值不小于零时,才有可能接受该方案,而证券投资方案的净现值一般为零。

(3)由于证券市场的竞争性远远高于产品市场,使得证券市场能够迅速达到竞争性均衡状态,因此,证券投资的平均租金高于零;而产品市场或者因为存在垄断和寡头,或者因为某个或某些企业的创新而使得该行业调整到竞争性均衡状态还需要一定的时间,所以固定资产投资可以赚取经济租金。

三、原因分析

1.从资本资产定价模型的角度来看。上面的分析似乎表明固定资产决策和证券投资决策是两种截然不同的决策类型,其实并非如此,两者实际上都使用资本资产定价模型来量化风险。

威廉夏普1964年开创的资本资产定价模型(Capital Asset Pricing Model,简称CAPM)被认为是财务管理学形成和发展中最重要的里程碑,它的出现第一次使人们能够对风险进行定量分析。这一模型为:

Kj=Rf+βj(Km—Rf)。

式中:Kj表示第j种股票或第j种证券组合的必要报酬率;Rf代表无风险报酬率;βj表示第j种股票或第j种证券组合的β系数;Km表示所有股票或所有证券的平均报酬率。

可见,资本资产定价模型简单、直观地揭示了证券的期望报酬率与风险之间的关系。

例:当前的无风险报酬率为6%,市场平均报酬率为12%,A项目的预期股权现金流量风险大,其值β为1.5;B项目的预期股权现金流量风险小,其β值为0.75,则:

A项目的必要报酬率=6%+1.5×(12%—4%)=18%

B项目的必要报酬率=6%+0.75×(12%—4%)=12%

因此,资本资产定价模型是证券投资分析的直接工具,应用资本资产定价模型可以直接预测证券投资组合的期望报酬率;而在固定资产投资决策中,资本资产定价模型同样发挥作用,即可以用于估计固定资产投资方案的机会成本,固定资产投资方案的风险越大,资金的机会成本也就越大。如果固定资产投资方案的净现值大于零,就说明该固定资产投资方案的期望报酬率大于资金的机会成本。

因此,无论是固定资产投资决策还是证券投资,资本资产定价模型都是一个有效的工具,所不同的是,在证券投资决策中,资金的机会成本就是该证券投资的期望报酬率;在固定资产投资决策中,用估计的资金机会成本作为折现率对固定资产投资方案的预期现金流量进行折现,计算其净现值,并根据计算结果的大小对投资方案作出取舍。

友情链接