首页 公文范文 化学反应工程原理

化学反应工程原理汇编(三篇)

发布时间:2023-10-13 15:37:36

绪论:一篇引人入胜的化学反应工程原理,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

化学反应工程原理

篇1

化学反应工程已成为化工类本科教育的一门专业课程,它以物理化学、化工原理、化工热力学等化工专业基础课为先修课程[1],但由于课程涉及大量的数学模型的建立、理论的推导,大多数学生在学习时普遍感到理论抽象,且在实际问题面前束手无策的高分低能现象。为适应新形势国民经济的发展和要求,我校化学反应工程课程体系在逐渐发生变化,探索出一种适合我校学生特点的新的专业课,为提高工程人才的培养质量、推动高等工程教育改革具有重要意义。

一、改革与具体研究方法

结合反应工程理论教学与学生工程实践能力培养的特点,我校化学反应工程课程教学团队认为该课程体系的改革,应从单向传授知识向互动性教学体系转变,建立系统传授与探索和创新研究相结合的新教学体系,具体如下:

1.课程体系“1+x”模块化建设:课程体系“1+x”模块化建设[2],深化反应工程理论的工业应用,直接关系到学生反应工程基本原理学习程度以及反应器设计与分析等工程能力的培养质量,不仅能增强理解理论知识的准确性和科学性,也扩展了反应器应用与新能源电容器、燃料电池等领域的应用,提高学生把握科技创新发展的命脉,锻炼学生的科研思维,为其在将来就业后能独立工作打下一定的基础。

将化学反应工程课程体系进行“1+x”模块化整合。其中,“1”指化学反应的基础理论知识及理想反应器,“x”指化工不同专业方向的非理想反应器及特色反应器。根据我校化学工程与工艺、应用化学、工业催化、制药工程等专业方向的特色,分别设置非理想反应器、催化反应设备、聚合反应器和制药反应设备,并将催化反应设备与结合当代新能源领域电池、电容器研究相结合,帮助学生扩展知识应用范围。根据学生情况及当代新能源研究热点,建立师生互动栏目、网络课堂和自测考试、qq群等,丰富学生第二课堂生活,扩展知识范围。

2. “启发互动式”教学法,充分调动学生学习思考的积极性,多媒体课件与实际工厂设备相结合[3],有助于提高学生感观认识;模拟反应器操作的仿真动画,使学生加深对这些理论、概念的认识、理解,增强学生综合运用知识解决问题的能力。

精心策划授课内容,培养学生的创新能力:要求课程教学团队精心策划、设计授课内容,合理运用多媒体与传统板书相结合的教学手段,多采用 “启发互动式”教学法,充分调动学生学习思考的积极性。比如:我校教学中采用多媒体技术模拟反应器操作的仿真动画,结合生产实际操作中各种反应器的影像资料,不仅解决了传统教学中老师难教、学生难懂的难题,而且大大提高了教学效率和授课效果,丰富了课堂教学内容,同时也培养了学生的学习创新能力;采用flas进行图文并茂,生动形象的影放化工过程和化工设备的实际运转实况,并辅以实验与理论的紧密结合,有助于教学质量跨上一个新台阶。

3. 建设化学反应工程精品课程:精品课程要求具有一流教师队伍、一流教学内容、一流教学方法、一流教材等特点的示范性课程。近年来,我校汇聚了一些化学反应工程的研究人才,如来自于新加坡南洋理工、南京大学、中科院大连化学物理研究所等著名学府,其组建的反应工程教学团队将围绕反应工程课程建设和当今新能源领域研究热点进行大量的教学改革,通过课程网站建立师生互动栏目、多媒体课件、网络课堂和自测考试、qq群等交流平台,使课堂整体教学与网络教学相互补充,并将课堂教学延伸到教室外,给学生增添更多的自主学习机会,进而动了学生的学习积极性。

4. 精选国外经典教材,为实施双语教学做准备:双语教育正成为中国课程改革中的一个热门话题,是21世纪实现创新教育的一种重要教学方式。为了提升我校本科人才培养专业素质,提高学生专业英语的理解与应用水平,拟实施部分双语教学在课程的考核中,专业术语用英文来表述,英文阅读和答题占试卷的60%以上。

二、改革目标

课程教学方法改革与创新有效提高学生的学习兴趣和教学质量,确定一套适合我校学生特点的灵活多变的教学方法,建立具有我校特点的化学反应工程实践教学内容和培养方案,进一步提高我校化学反应工程课程的教学质量,为学生今后顺利完成毕业论文和毕业设计,以及科研能力的培养奠定扎实基础。同时,使学生掌握基本的理论外,注重培养学生起对工程问题的分析和解决能力,使学生能运用所学知识解决化工及相关领域的实际问题。

三、结论

化学反应工程已成为化工类本科教育的一门专业课程,随着化学工业的快速发展和环境污染问题的日益突出,新型反应设备与技术显得越来越重要,反应要从实验室放大到工业生产以及工业反应器的设计等一系列重要的化学工程问题都离不开化学反应工程的指导,为了适应新世纪知识经济时代的发展、国家及我校创新高素质人才培养目标的要求,进一步深化化学反应工程课程改革,想方设法调动学生的学习兴趣,丰富教学内容,培养学生分析、解决工程问题的创新能力,形成适合新时代人才发展的教学方式具有划时代的深远意义。

参考文献:

篇2

2.CFD在化学工程换热器中的应用分析

换热器是化学工程中使用最多的设备,通过计算流体力学的计算方式,不仅可以精确、详细的测量换热设备内流场的流动,也可以预测换热器的性能,经济可靠的换热器对化工工业具有重要作用。对于化工中的管壳式换热设备,其内部的几何形状设备结构复杂,利用计算流体力学模拟管壳式换热设备的壳侧流场,进而充分了解管壳式换热设备的壳侧在瞬间变化中的温度场、速度场,CFD的应用有利于分析研究换热器的基本原理和结构构造。

篇3

1.前言

近年来,裂解原理在化学工程中的应用范围正在逐渐扩大,究其原因离不开裂解原理本身的一些特点,这些特点决定了它在化学工程中的独特作用,使其能够在工业生产中占据一席之地,并为我国国民生产总值的提高做出贡献。对此,我们有必要针对裂解原理在化学工程过程中的应用进行积极的研究和探讨。

2.“裂解”的概念及内涵

在化学工程的概念中,裂解指的是在热能的作用下将某种高分子的化合物转变为其他低分子的化合物,该化学过程又叫做热解或热裂解[1]。这一工艺往往应用于石油化工的生产过程,它的发生温度较高,一般在七百至八百摄氏度之间,有些特殊的裂解反应甚至需要提供一千摄氏度的高温才能进行,也正是因为超出裂化的高温使得裂解反应可以不同于裂化反应达到更好的效果,比如它可以通过断裂长链烃的过程将石油或石油气的分馏产物转变为丙烯或乙烯等链烃较短的物质。可以说,高温是裂解反应的必要条件。

依照反应条件,裂解反应大致包括以下几种类型:首先是含水裂解。顾名思义,含水裂解就是指反应过程中有水存在的裂解过程,一般包括对石油进行蒸汽裂化或是从有机废料中提取出轻质的原油,这些过程都需要或不排斥水分子的存在;其次是无水裂解。不像有水裂解需要或容许水分子的存在,无水裂解恰恰是不需要水分子才能发生反应的化学过程。无水裂解的历史由来已久,古代的时候,古人将木材变成木炭的过程就属于无水裂解的过程。目前看来,这种裂解方式还可以用于塑料及生物质能中液体燃料的制取;第三种类型是真空裂解。真空裂解控制的是化学反应中的空气含量,某些物质在没有空气的情况下才能进行裂解。

3.裂解原理的工业用途

裂解原理在目前的化学工程中的应用相对来说是比较广泛的,起初的化学工程中,裂解反应的原料主要包括柴油、煤油及石脑油等,不过随着化学工业的发展和化学理念的变更,重油逐渐成为人们更为倚重的裂解反应原料。裂解的过程往往还会伴随着环化、缩合以及脱氢等不同类型的化学反应。

一般来说,我们可以将整个反应过程分成两个不同的阶段。在第一阶段的时候,裂解原料发生了初步的化学变化,会形成我们需要的目的产物,比如丙烯及乙烯等,这是一次反应过程。第二阶段的时候,是一次反应的产物作为反应物发生的二次变化,所以也叫做二次反应,亦即丙烯及乙烯转变成了二烯烃、环烷烃、芳烃及炔烃等的过程,甚至还有反应更为彻底的,直接变成了焦炭和氢气。经过了一次反应和二次反应以后,人们获得的裂解产物就比较复杂了,可以说是不同物质组成的混合物。一般来说,裂解反应受到温度、原料及反应时间的影响比较大,这三项因素的变化会导致不同的反应产物出现。一般来说,化工生产中比较常见的反应容器是蓄热炉或管式炉,在这两种反应容器中,石油烃会变成芳香烃、炔烃及烯烃等小分子物质,比如丙烯、乙烯、乙炔、丁二烯、甲苯及苯等。

目前的化学工程中,裂解原理一般用在化工产品的合成上,比如将二氯乙烯进行裂解以后,人们可以得到PVC,即聚氯乙烯。而聚氯乙烯是人们日常生活用品中比较常用的一种原材料,比如门窗、管材、板材、鞋底、玩具、文具、电线外皮及包装盒等物品,都是由聚氯乙烯制成[2],虽然除了化学工程领域的工作者及相关的研究者以外多数人并不了这些日常生活用品的合成过程。另外,在化学工程中,难免要出现一些化工废料,对这些化工废料的处理同样离不开裂解反应,因为它可以通过不同类型的裂解过程将这些化工废料转变成一些低害物质以避免对自然环境的污染,甚至有些化工废料还能够在裂解反应的作用下变成能够被人们二次利用的新的化工原料,这样就实现了资源的可持续利用,是低碳环保理念所提倡的一种化工生产方式。比如“合成气”,经过裂解反应将部分化工废料转变为合成气后,合成气又可以成为氨及甲醇的制造原料,而氨又是尿素及各类复合肥、硝酸等的重要合成材料。

4.结语

裂解反应是目前化学工程中应用比较广泛的一类化学反应类型,它与人们的日常生活息息相关,为推动我国国民经济的发展及方便人们的日常生活做出着巨大的贡献。作为化学反应的类型之一,裂解反应不可避免地受到一定反应条件的制约并且也会有部分能耗的浪费,在未来的发展过程中,更新裂解反应的技术工艺,创造低碳、节能、环保的裂解方式必然会成为化学工程发展的方向和目标。■

友情链接