首页 公文范文 生物化学的研究进展

生物化学的研究进展汇编(三篇)

发布时间:2023-12-20 11:44:38

绪论:一篇引人入胜的生物化学的研究进展,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

生物化学的研究进展

篇1

[中图分类号] R736.1 [文献标识码] A [文章编号] 1674-4721(2013)09(b)-0019-03

甲状腺癌主要组织病理学类型包括状癌(PTC)、滤泡状癌(FTC)、髓样癌(MTC)以及未分化癌(ATC)。前两者统称分化型甲状腺癌(DTC),共占甲状腺癌的90%以上,占头颈部恶性肿瘤的首位,占所有恶性肿瘤的3%,女性发病率较高。近20年来,我国甲状腺癌发病率呈明显上升趋势,由约1/10万上升到(3~4)/10万。DTC确切的致病因素尚不清楚,幼年时过量射线照射是目前唯一确定的致癌机制[1-2]。近年来分子生物学技术研究使人们对甲状腺癌的分子机制有了更深入的了解,这对于指导甲状腺癌的诊断治疗及疗效评价有非常重要的意义,本文就DTC相关基因研究进展进行综述。

1 BRAF基因

BRAF基因最早是在人类尤文肉瘤中发现的高度表达变异的癌基因,在极少数的胃肠癌、肺癌、卵巢癌以及甲状腺癌等多种肿瘤中都有表达[3]。BRAF又名鼠类肉瘤滤过性毒菌致癌同源体B1,该基因位于第7号染色体,为RAF基因家族成员之一,是RET和RAS的下游信号分子。目前认为,BRAF基因突变是甲状腺癌最常见的基因变异之一,约49%的PTC和25%的ATC会出现该基因的表达[4]。其发生机制为BRAF基因错义突变的15外显子碱基,致使翻译蛋白质600位密码子将对应的缬氨酸 (V600E)替代为谷氨酸,可活化蛋白激酶,并进一步激活ERK激酶,向MAPK信号通路下游传递细胞有丝分裂信号,致使甲状腺细胞肿瘤形成并向恶性转化[5]。

BRAF基因突变是近年来甲状腺癌基因领域的重要研究进展,也是目前针对DTC发生机制研究最多的突变类型之一。最近研究显示导致激酶激活突变的因素有多种,包括点突变框内插入或框内缺失、放射线暴露等,尽管其发生率较低。由于BRAF基因突变在DTC中发生率较高,而在甲状腺良性病变中检测不到,因此该突变可以作为特异性较强的DTC诊断指标。该突变与低分化的甲状腺癌及ATC的变异性也有较强关联性,在高细胞及经典亚型的PTC中更为常见。还有研究显示该突变的存在似乎与肿瘤的侵袭性特征有关,此突变可使肿瘤更易去分化,因为此突变可见于间变性转化,如甲状腺包膜外侵犯、远处转移和肿瘤复发,而这类因素往往代表着较高的肿瘤相关死亡率。一些大样本临床研究证实,腺体外浸润、区域淋巴结转移、TNM分期(Ⅲ/Ⅳ期)均与BRAF突变呈正相关[6]。有研究对PTC患者随访显示高达80%~85%的复发PTC伴有BRAF突变,这证明对于PTC复发,BRAF突变有很强的预测作用。

以BRAF以及其下游激酶为靶点的分子靶向药物治疗已成为目前DTC治疗研究的又一热点。近年来研究显示多靶点激酶抑制剂索拉非尼(sorafenib)能抑制BRAF突变基因型的甲状腺肿瘤细胞和甲癌肿瘤模型的增殖和生长,但目前国内尚未见该药用于甲状腺癌治疗的报道[7]。

2 RET/PTC重排基因

RET基因于1985年首次发现于小鼠转化的NIH3T3细胞中,因其同样具有与其他基因重排及活化的特征,故又称为RET原癌基因。RET原癌基因经重排后被称为RET/PTC癌基因,属于酪氨酸蛋白激酶受体家族。在这些RET/PTC重排中,RET基因的跨膜区和细胞外区丢失,取而代之的是不同基因来源的5′末端,例如RET与H4融合形成RET/PTC1嵌合体,与RIalpha融合形成RET/PTC2嵌合体等。其产生的嵌合体使RET原癌基因编码的酪氨酸蛋白激酶发生激活,通过下游信号的传导使甲状腺滤泡上皮细胞发生恶性转化[8]。目前研究指出,甲状腺的免疫功能通过RET/PTC1下调,可间接促进PTC的发生。提示癌基因、免疫、炎症及恶性肿瘤生物学特性之间存在一定联系,在甲状腺癌发病机制中RET/PTC基因重排有较重要的作用。

在PTC细胞中RET/PTC基因重排普遍存在,而在正常甲状腺组织及良性甲状腺病变中不表达或基本不表达[9],所以RET/PTC重排可以作为诊断PTC较特异的指标。但PTC中RET/PTC的表达率报道不一,所以其阴性结果并不能完全除外PTC。此外,国外研究还发现放射性暴露史能引起RET/PTC基因重排并进一步促使甲状腺癌的发生。国外学者报道幼年时曾有放射线暴露史的PTC患者的RET/PTC重排发生率明显高于无此经历的PTC患者[10]。还有作者对在切尔诺贝利核泄露事故中受过量射线照射所致的状甲状腺癌患者进行分子生物学分析也发现上述特点。

对于有无RET/PTC重排及与PTC的临床特征之间的关系,目前临床认为存在RET/PTC重排的PTC患者的TNM分期更晚,也更易表现出甲状腺被膜外侵犯,也更易复发。但由于采集病例数较少以及所采用的免疫方法不同,在不同的国家和地区,其阳性率相差也比较大,为2.5%~53.5%。还有证据显示是否存在RET/PTC重排与甲状腺状癌的不同生物学行为特点有关,有RET/PTC2重排的分化型甲状腺癌往往具有高度的侵袭性和去分化能力[11]。国外Zafon等[12]报道 RET/PTC表达阳性的甲状腺状癌患者更易发生局部浸润及淋巴结转移,两者差异有统计学意义(P

舒尼替尼(sunitinib)为近年研制的一种多靶点受体拮抗剂,可以明显抑制RET/PTC酪氨酸激酶[13]。在另一项研究中,舒尼替尼可抑制具有RET/PTC1重组的PTC增殖和生长,但目前国内亦尚未用于甲状腺癌的临床治疗。

3 RAS原癌基因

RAS是一种原癌基因,广泛存在于人和动物细胞中,为人类多种肿瘤最常见的基因异常。RAS基因包括K-RAS、H-RAS和N-RAS 3种类型,这三种基因内结构分别很大,但都编码一种结构相似的G蛋白质,分子量为21 kD,故统称为P21-RAS[14]。分子生物学及遗传学研究提示,RAS基因是存在于细胞膜上一种鸟嘌呤核苷酸的结合蛋白,为多种酪氨酸激酶受体的感受器,并细胞的生长及分化起调解作用。该基因一般有两种存在方式,即与GDP结合时的失活状态以及与GTP结合时的活化状态。突变的RAS蛋白降低了自身内源性鸟苷酸三磷酸酶(GTP)的活性,其结果是致使GTP与RAS蛋白的持续结合并具有了促使细胞生长的作用,致使RAS处于一种持续激活的状态中。由于酪氨酸激酶受体等多种信号传导通道的传感器都受该基因编码联系,并可激活多个不同信号传导通道,其结局会导致甲状腺组织细胞转化为恶性。

RAS突变常在特定肿瘤中出现,如RAS突变可见于95%的胰腺癌中。它也是DTC中检测到的最常见的突变之一。不同的肿瘤有不同的RAS基因突变类型,如K-RAS突变与肺癌有关等。DTC中已经检测到多种RAS基因突变如N-RAS、K-RAS、H-RAS,但在MTC组织中几乎从未检测出该基因突变。该基因突变主要存在于滤泡型PTC及滤泡性腺瘤中,但FTC少见[15-16],该基因突变还对滤泡性腺瘤能否进一步发展为腺癌或者未分化癌具有一定的预测意义,为RAS阳性的腺瘤积极手术切除提供依据。大约10%的FTC可见RAS基因的点突变,并且似乎仅与滤泡亚型FTC有关。RAS点突变型FTC往往伴有滤泡变异型组织学的特性,表现为肿瘤外侵、肿瘤的失分化和出现转移,这在存在骨转移的病例中表现尤为明显[17]。而在低分化DTC组织中往往RAS突变检出率较高,表明该突变会导致DTC更强的侵袭能力。

RAS突变是在DTC中比较多见的事件,具有较高的特异性和敏感性。RAS突变和这些肿瘤的预后及临床特征密切相关,作为一种DTC的诊断学标志具有较广阔的发展前景。RAS抑制剂洛伐他汀已被证实在RAS突变的的甲状腺肿瘤的体内具有抗肿瘤效果[18],为RAS突变表达的DTC提供了新的治疗方法,可能对限制肿瘤的播散有作用,这还需要临床进一步研究。

综上所述,多种免疫组化结果与DTC的发生、发展、预后和转归有密切关系,而且,每种基因的作用均有所不同。甲状腺标本检测P21-RAS有助于分化型甲状腺癌的诊断,而进行RET/PTC及BRAF检测,不但可以有助于诊断PTC,而且可更好地估计肿瘤的侵袭性及淋巴结转移特点,对于肿瘤的后续治疗方案(如分子靶向治疗等)及判断预后有重要价值。

[参考文献]

[1] Nikiforov Y E.Molecular diagnostics of thyroid tumors[J].Arch Pathol Lab Med,2011,135(24):569-577.

[2] Hamatani K,Eguchi H,Ito R,et al. RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose[J].Cancer Res,2008,68(17):7176-7182.

[3] Ikawa S,Fukui M,Ueyama Y,et al.B-raf,a new member of the raf family,is activated by DNA rearrangement[J].Mol Cell Biol,1988,8(6):2651-2654.

[4] Watanabe R,Hayashi Y,Sassa M,et al. Possible involvement of BRAF V600E in altered gene expression in papillary thyroid cancer[J].Endocr J,2009,56(3):407-414.

[5] Oler G,Camacho CP,Hojaij FC,et al.Gene expression profiling of papillary thyroid carcinoma identifies transcripts correlated with BRAF mutational status and lymph node metastasis[J].Clin Cancer Res,2008,14(15):4735-4742.

[6] Kebebew E,Weng J,Bauer J,et al.The prevalence and prognostic value of BRAF mutation in thyroid cancer[J].Am Surg,2007,246(3):466-470.

[7] Lam ET, Ringel MD, Kloos RT,et al. PhaseⅡclinical trial of sorafenib in metastatic medullary thyroid cancer[J].J Clin Oncol,2010,28(14):2323-2330.

[8] KodamaY,Asai N,KawaiK,et al.The RET protooncogene:a molecular therapeutic target in thyroid cancer[J].Cancer Sci,2009,96(3):143-148.

[9] Nikiforova MN,Nikiforov YE. Molecular genetics of thyroid cancer:implications for diagnosis, treatment and prognosis[J].Expert Rev Mol Diagn,2008,8(1):83-85.

[10] Hamatani K,Eguchi H,Ito R,et al. RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose[J]. Cancer Res,2008,68(17):7176-7182.

[11] Nikiforov YE.RET/PTC rearrangement in thyroid tumors[J].Endocr Pathol,2012,13(1):3-16.

[12] Zafon C,Obiols G,Castellvl J,et al.Clinical significance of RET/PTC and p53 protein expression in sporadic papillary thyroid carcinoma[J].Histopathology,2007,50:225-231.

[13] Torino F,Paragliola RM,Barnabei A,et al. Medullary thyroid cancer:a promising model for targeted therapy[J]. Curr Mol Med,2010,10(7):608-625.

[14] Missero C,Pirro MT,Di Lauro R.Multiple RAS downstream pathways mediate functional repression of the homeobox gene product TTF-I[J]. Mol Cell Biol,2000,20(8):2783-2793.

[15] Esapa CT,Johnson SJ,Kendall-Taylor P,et al. Prevalence of RAS mutations in thyroid neopiasia[J]. Clin Endocrinol(Oxf),1999,50(4):529-535.

[16] Suarez HG,du Villard JA,Severino M,et al. Presence of mutations in all three RAS genes in human thyroid tumors[J].Onco gene,1990,S(4):565-570.

篇2

Review on research progress of chemical constituents and bioactivities of Solidago

SHEN Xiao1,2, ZOU Zhengrong1,2*

(1 College of Life Science, Jiangxi Normal University, Nanchang 330022, China;

2 Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Nanchang 330022, China)

[Abstract]The species of the Solidago are abundant and possess great value in medicine Many relevant researches of chemical constituents and bioactivities from the genus Solidago have been further reported by many scientists The review is to present an overview about studies on chemical constituents and bioactivities of the Solidago since 2011, which will provide some foundations and references for the later study

[Key words]Solidago; chemical constituents; bioactivities

doi:10.4268/cjcmm20162303

一枝黄花属Solidago L植物属桔梗目Campanulales菊科Compositae,全球约120种,主要分布于北美,少数分布于欧洲和亚洲。中国主要分布有4种:加拿大一枝黄花S canadensis L、毛果一枝黄花S virgauren L、钝苞一枝黄花S pacifica Juz和一枝黄花S decurrens Lour[1]。一枝黄花属植物资源丰富,含多炔、二萜、三萜、三萜皂苷、酚类及挥发油等多种生物活性成分,具有抗菌、抗炎、抗肿瘤、杀虫、利尿等作用,药用价值极高[23]。近年来许多学者对一枝黄花属植物的化学成分及其生物活性进行了深入的研究,成功分离鉴定了多种新的化合物,并进一步研究了它们的生物活性和构效关系。本文主要对2011年至今国内外学者对4种一枝黄花属植物化学成分及生物活性的研究进展进行综述,为一枝黄花属药用植物资源的进一步研究和开发利用提供参考。

1我国主要的一枝黄花属植物

11加拿大一枝黄花

加拿大一枝黄花原产北美,1935年作为庭院观赏植物引入我国,后逸生至野外,成为恶性杂草[4]。由于环境的可入侵性及其发达的根状茎能产生大量无性繁殖体[5],使得该植物迅速并大量繁殖,在江苏、安徽、上海、浙江、江西和台湾等地广为分布[6],对我国生态系统的多样性和农业生产造成了严重的环境破坏与经济损失[7]。近年来对加拿大一枝黄花的研究主要集中在入侵机理、防治、化感作用、化学成分和生物活性等方面。研究发现,加拿大一枝黄花对鸡眼草Kummerowia striata的共生菌丛枝根菌真菌群落具化感作用,使鸡眼草的共生菌群结构发生改变,鸡眼草的分枝数、生物量和养分积累等受到影响,竞争力减弱,进一步加速了加拿大一枝黄花的入侵[8];加拿大一枝黄花同样也能抑制藻类的生长,其叶水浸液对铜绿微囊藻Microcystis aeruginosa的生长有强烈的化感抑制效应,且其根、茎、叶等不同部位水浸液对同一种藻的化感效应存在差异[9]。

加拿大一枝黄花中富含黄酮、萜类和精油等化学成分,具抗菌、抗肿瘤等多种生物活性。利用有机溶剂乙醇和石油醚提取加拿大一枝黄花花序中的总黄酮,采用抑菌圈法进行抑菌性实验,当制备的黄酮类化合物质量浓度为0056 g・L-1时,黄酮类提取物出现一定的抑菌作用,但对不同菌种的抑制强度不同,对各菌种的抑制效果为:大肠杆菌Escherichia coli>枯草芽孢杆菌Bacillus subtilis>酿酒酵母Saccharomyces cerevisiae,对黑曲霉Aspergillus niger却没有抑制作用[10];Zeng等[11]从加拿大一枝黄花的地上部分分离并鉴定出2个克罗烷型二萜类化合物,solidagocanin A和solidagocanin B,但未对这2个化合物的生物活性进行进一步的研究。

12毛果一枝黄花

毛果一枝黄花又名新疆一枝黄花,主产于我国新疆阿尔泰山等海拔较高地区的树林下及灌木丛中,在东北、华北以及前苏联、蒙古等地也有分布[1],其多具利尿、抗炎等作用,在W美用于治疗泌尿系统疾病有着悠久的历史[12]。

近年来对毛果一枝黄花的研究主要涉及该植物活性化合物的结构鉴定、作用机制和遗传分子标记等方面。李涛等[13]从毛果一枝黄花全草95%乙醇提取物中分离得到9个化合物,其中化合物2′甲氧基苯甲醇2甲氧基6羟基苯甲酸酯 (2′methoxybenzyl2methoxy6hydroxybenzoate)和2′甲氧基苯甲醇2,6二甲氧基苯甲酸酯 (2′methoxybenzyl2,6dimethoxybenzoate)对脂多糖 (LPS)诱导的小鼠单核细胞RAW2647释放的肿瘤坏死因子α (TNFα)及白细胞介素6 (IL6)具有抑制作用。同时也有研究报道毛果一枝黄花具有一定的抗病毒[14]和抑制脂肪形成[15]的作用。Sakaguchi等[16]研究者对日本毛果一枝黄花的3个亚种开发了多态性的ESTSSR标记,对它们进行种群结构以及分类界限的分析,为研究毛果一枝黄花的种群遗传学和生殖生态学提供分子依据。

13钝苞一枝黄花

钝苞一枝黄花主要分布于我国河北、辽宁、吉林等地,前苏联和日本也有分布[17]。到目前为止,其他国家对钝苞一枝黄花的研究较少。王文杰[17]于2012年对它的化学成分进行了系统的研究,从中分离鉴定了17个单体化合物,但未对分离得到的单体化合物进行生物活性方面的研究。

14一枝黄花

一枝黄花又名黄花草、满山王、白草根等,主要分布于我国的华东、中南及西南等地,常生长于山坡、草地及路旁,为我国的乡土植物,也是我国重要的传统中药之一[1]。

对一枝黄花的研究主要集中在植物精油、抑菌及临床应用方面。叶其蓁等[18]利用气相色谱质谱联用法(GCMS)对加拿大一枝黄花花序和茎叶的挥发油成分进行定性分析,共鉴定出81个化合物,主要为芳香化合物、萜类、醇、酯以及烷、酮等;郭彦荣等[19]长期的临床应用经验表明将一枝黄花煎剂用于治疗儿童大叶性肺炎效果更佳,这可能与一枝黄花的抗菌、抗炎等作用有关;张孝云等[20]对60例全麻术后患者进行研究,发现一枝黄花含漱液可明显降低全麻术后禁食患者口腔黏膜炎的发生和肺部的感染 (P

2一枝黄花属植物中的化学成分

一枝黄花属植物中的化学成分丰富,主要包括黄酮、二萜、三萜、甾醇、苯甲酸、苯甲酸苄酯类及挥发油等活性成分。

21黄酮类

黄酮类化合物是重要的抗氧化物质,一般具有C6C3C6结构,B环的邻二羟基 (邻苯二酚)、2,3双键与羰基结构以及3,5羟基是决定黄酮类物质的自由基清除活性的重要因素[21]。

李涛等[22]采用硅胶柱色谱、凝胶柱色谱、ODS反相柱色谱以及重结晶等方法分离纯化毛果一枝黄花提取物,并通过理化常数和波谱分析鉴定化合物结构,分离并鉴定出1个黄酮类化合物胡麻素 (pedalitin, 1);王文杰等[17]首次对钝苞一枝黄花干燥全草中的化学成分进行系统的研究,分离并鉴定出化合物 1、棕矢车菊素 (jaceosidin, 2)、槲皮素 (quercetin, 3)、紫云英苷 (astragalin, 4)、山柰酚 (kaemferol, 5)、山柰酚3OβD芸香糖苷 (kaempferol3OβDrutinoside, 6)等黄酮类物质。化学成分来源及结构见表1,图1。

22二萜类

二萜类成分是一枝黄花属植物中分布最广泛的一类化合物,近年来主要集中在半日花烷型 (labdane type)和克罗烷型 (clerodane type)二萜类化合物的研究。

221半日花烷型Wangensteen等[23]通过1D, 2D核磁共振技术和MS分析法从加拿大一枝黄花根的乙醇提取物中分离鉴定了8个半日花烷型二萜类化合物的结构,分别为9,13,15,16bisepoxylabdane7ene6,15dione (7), 15,16

epoxylabdane7,13diene6,15dione (8), solidagenone (9), deoxysolidagenone (10), 13epi9,13,15,16bisepoxylabdane7ene6,15dione (11), 15,16Epoxylabdane7,13diene6,16dione (12), 15ethoxy9,13,15,16bisepoxylabdane7ene6one (13)和13epi15ethoxy9,13,15,16bisepoxylabdane7ene6one (14)。其中化合物7, 11~14均为首次从加拿大一枝黄花中提取分离。1HNMR的数据显示,化合物7与11, 13与14为2对差向异构体。化合物7与11同化合物10进行比较分析,7与11的萘烷核心结构与10相似,但7与11的H9位信号消失,C9 (δ 910)位的去屏蔽作用增强。化合物12与10相比,具有相同的萘烷核心结构,但化合物12的侧链基团CH2CH2上连有1个γ内酯环。化合物13与14的量作为一对差向异构体的比列为2∶1,化合物12, 13与14均为1个4环的半日花烷型二萜,化合物12与13, 14的最大区别在于D环,13, 14的内酯环羰基消失,取而代之的是1个乙氧基基团,推测化合物13与14可能是在乙醇提取过程中形成的衍生物。Li等[24]在筛选具有抑制人类苦味受体活性的植物天然产物时,发现加拿大一枝黄花地上部分的氯仿提取物对苦味受体hTAS2R31具抑制作用(IC5025 μmol・L-1)。运用GOLD 301对接程序,将化合物16接入hTAS2R31受体的活性部位,结果@示化合物16的萘烷核心结构位于hTAS2R31受体的疏水腔,周围被Phe242, Ile245, Val179, Leu138和Trp88等氨基酸残基所包围,乙酰基朝向可溶性表面,与Tyr241的侧链形成氢键,其羧基侧链深深地伸向活性部位,与Lys265和Thr91之间形成氢键,羧基基团与Arg268之间也形成相互作用的盐桥,因此化合物16能与hTAS2R31受体紧密结合。然而,化合物17却无法像化合物16一样占据相同的结合位点,这可能是由于化合物17萘烷环内双键的合并,影响了环的构象,同时也改变了羧基基团的方向,因此它只能结合在hTAS2R31受体的外部。从加拿大一枝黄花中分离得到具抑制苦味活性的化合物16是目前所有分离到的二萜类的中产量最高的。综合运用HPLCDAD和MS分析法,从干重为100 g的加拿大一枝黄花地上部分,可以提取分离鉴定得到224 g的化合物16,提取率为224%,加拿大一枝黄花可作为遮盖苦味的矫味剂。化学成分的来源及结构见表2,图2。

李涛等[22]从毛果一枝黄花提取物中分离并鉴定出1个二肽类衍生物NbenzoylphenylalaninylNbenzoylphenylalaninate (47)。之后,李涛等[13]采用同样的方法从毛果一枝黄花中分析鉴定出9个化合物,其中包括十六烷酸 (hexadecanoic acid, 48)和毛果一枝黄花素 (solidagobenzofuran, 49)。Shiraiwa等[27]从一枝黄花干燥全草提取物中分离鉴定出5个3脱氧D甘露2辛酮糖酸衍生物:decurrenside A (50), decurrenside B (51), decurrenside C (52), decurrenside D (53)和decurrenside E (54),它们具有独特的二氧环辛烷骨架,具有抑制由牛科(Bovidae)哺乳类动物肾上腺骨髓细胞内乙酰胆碱、藜芦碱和高K+诱导的儿茶酚胺分泌的活性。王文杰等[17]从钝苞一枝黄花干燥全草中分离出eupaformonin (55), neoechinulin A (56)和橙黄胡椒酰胺 (aurantiamide acetate, 57)等化合物。化学成分来源及结构见表6,图6。

26挥发油

植物挥发油成分多以萜成分为主,具有抗菌和抗虫等活性。本属植物挥发油的GCMS分析表明,一枝黄花属植物中的挥发油组分与含量因植物种类及采样部位不同而存在差异。

用水蒸汽蒸馏法提取加拿大一枝黄花花序挥发油,通过GCMS分析法共鉴定出53个化学成分,达总挥发油的918%,其化学成分主要以β毕澄茄烯 (269%)、α蒎烯 (138%)、D柠檬烯 (122%)、β蒎烯 (93%)和乙酸龙脑酯 (32%)居多。毕澄茄烯类化合物是一种倍半萜烯,有轻微樟脑丸特有的气味,通常作为一种香料加入化妆品和食品中[29]。对加拿大一枝黄花地上部分精油成分进行分析,共鉴定出58个化合物,相对分子质量在1%以上的化合物有17个,其中大根香叶烯D是最主要的成分 (相对质量分数达49433 6%)。该植物精油对绿豆象Callosobruchus chinensis L的种群有抑制作用,精油为1~3 μL・g-1时,种群抑制率为5730%~8212%[30]。从一枝黄花的花序和茎叶中提取挥发油并进行GCMS定性分析,共鉴定出81个化合物,主要为萜类、芳香化合物、醇、酯及烷等。花序和茎叶中挥发油的

主要成分相同,均为 (-)斯巴醇 (花序中含2243%,茎叶中含2595%)和δ榄香烯 (花序中含1677%,茎叶中含12%)。此外2个部位都还含有一定量的β榄香烯 (花序中含619%,茎叶中含384%)和石竹素 (花序中含455%,茎叶中含204%)[18]。

3一枝黄花属植物的生物活性

一枝黄花属植物具多种药用及农用生物活性,包括抗菌、抗炎、抗肿瘤、抗氧化、平喘、抑制脂肪形成、保护心脏及抗虫等。

31抗菌活性

钱慧等[10]对加拿大一枝黄花花序中的黄酮类化合物进行抑菌性实验,结果表明当质量浓度为0028 g・L-1时,并未对4种微生物表现出抑制作用;当质量浓度增加到0056 g・L-1时,即显示对杆菌的抑制作用,但对真菌的抑制作用较弱,对各菌种的抑制效果为:大肠杆菌E coli>枯草芽孢杆菌B subtilis>酿酒酵母S cerevisiae,对黑曲霉A niger没有抑制作用。加拿大一枝黄花花序中提取的黄酮类化合物对樱桃番茄果实有较显著的保鲜效果,其质量浓度为0028 g・L-1时即能有效降低贮果的霉变率,其在鲜果表面的抑菌效应明显大于在培养基上的表现(黄酮类化合物质量浓度在0028 g・L-1时未见明显的抑菌圈)。

Chevalier等[31]提取毛果一枝黄花的2个亚种S virgaurea subsp virgaurea (SVV)和S virgaurea subsp Alpestris (SVA)中的皂苷类化合物,并采用琼脂扩散法进行抗菌研究,实验结果显示其皂苷类提取物对白色念珠球菌 (Candida albicans)的4个菌株 (ATCC 10231,IM001,IM003,IM007)均无抑制作用。但是,在实验过程中发现这些提取物却能抑制其菌丝的转换――使其芽管变得更短。另外SVV和SVA水提取物 (50 μL)均能显著地减少白色念珠球菌4个株系生物膜的形成 (P

10231,(9586±488)%;IM001,(9600±222)%;IM003,(9946±594)%;IM007,(9514±411)%。采用Mann和Whitney的非参数检验,发现SVV和SVA之间在数据上并无显著性差异。Chevalier等也发现SVV和SVA水提取液 (100 μL)也能显著地减少白色念珠球菌预成型生物膜,将繁殖18 h后的白色念珠球菌生物膜暴露在SVV和SVA水提取液中繁殖2 h,结果其发育能力显著减弱 (P

32抗炎活性

李涛等[13]运用酶联免疫吸附测定法 (enzymelinked immunosorbent assay),利用脂多糖 (LPS)诱导体外炎症模型z测毛果一枝黄花中苯甲酸苄酯类化合物对脂多糖 (LPS)诱导小鼠单核巨噬细胞RAW2647释放炎症介质IL6和TNFα的抑制作用。实验结果显示1×10-4 mol・L-1化合物38和39对LSP诱导小鼠单核巨噬细胞RAW2647释放炎症介质IL6和TNFα具有抑制作用,化合物40的抑制作用不明显,这3个化合物的抑制作用均呈现明显的浓度依赖性。作为毛果一枝黄花中量较高的苯甲酸苄酯类化合物,推断该类化合物可能为毛果一枝黄花抗炎活性的主要活性成分之一。

33抗肿瘤活性

Huang等[29]用水蒸气蒸馏法提取加拿大一枝黄花花挥发油,采用MTT法进行体外细胞毒活性测定实验,测定结果表明加拿大一枝黄花花序挥发油对人类乳腺癌细胞MDAMB435、人类肝癌细胞HepG2和人类肺癌细胞A549表现出微弱的细胞毒活性,在质量浓度为100 mg・L-1时,对MDAMB435,HepG2和A549的抑制率分别为1709%,1147%和448%,但对人类结肠癌细胞LOVO和人类外周血早幼粒细胞HL60未显示出细胞毒活性。

34抗氧化活性

汤晓等[32]对加拿大一枝黄花不同部位、不同时间乙醇提取液的羟基自由基清除能力进行了研究,并对加拿大一枝黄花内含物进行HPLC分析,发现7―8月份叶提取液的自由基清除能力要高于其它各个月份的提取液,且其自由基清除能力与抗坏血酸相当,此时含有较多的黄酮类,尤其是槲皮苷类。

35平喘作用

Sutovska等[33]用热碱提取加拿大一枝花中的多酚多糖蛋白复合物,发现大剂量 (50,75 mg・kg-1)的提取物止咳活性比低剂量 (25 mg・kg-1)高出15%~20%,但最大剂量 (75 mg・kg-1)的提取物还是比最强的止咳药 (可待因)低10%。此外75 mg・kg-1剂量的平喘活性持续时间要比平喘药 (舒喘宁)长。郭彦荣等[19]发现在大叶性肺炎治疗中加用一枝黄花能使患儿热退快,减少并发症,或使得并发症治愈率明显提高,推测这些效果与该药的抗菌作用、祛痰平喘作用有关。

36其他生物活性

Huang等[28]从加拿大一枝黄花的地上部分提取分离出3个木质素类化合物:化合物43~46,并对高脂饮食喂养的仓鼠进行血脂测验,发现这3个木质素类化合物对仓鼠均具有降血脂的作用 (P

ElTantawy等[34]为评价毛果一枝黄花提取物对预防仓鼠心脏中毒的作用,设置了6组实验,对照组 (蒸馏水处理)、异丙肾上腺素处理组、毛果一枝黄花提取物与异丙肾上腺素处理组、毛果一枝黄花提取液处理组、异丙肾上腺素与甲巯丙脯酸处理组及甲巯丙脯酸处理组。甲巯丙脯酸为一种血管紧张素转化酶抑制剂,是临床上标准的心脏保护药。实验结果表明毛果一枝花提取物 (250 mg・kg-1)对仓鼠心脏具有明显的保护作用。用异丙肾上腺素 (30 mg・kg-1)诱导仓鼠心脏中毒,与对照组相比,实验组心脏组织血清中的乳酸脱氢酶 (LDH)、内氨酸转氨酶 (ALT)、天冬氨酸转氨酶 (AST)、肌酸磷酸激酶 (CPK)、血管紧张素酶 (ACE)等多种酶活性及总胆固醇 (TC)、三酸甘油酯 (TG)、游离血清脂肪酸、丙二醇 (MDA)和NO水平显著升高,但心脏组织中的谷胱甘肽 (GSH)和过氧化物歧化酶 (SOD)水平显著却下降 (P

一枝黄花属植物还具有抗虫等生物活性,如邓业成等[30]研究表明加拿大一枝黄花的植物精油对储粮害虫赤拟谷盗、玉米象和绿豆象有熏蒸和触杀活性。对赤拟谷盗Tribolium castanum Herbst、玉米象Sitophilus zeamais Motsculsky和绿豆象C. chinensis L的熏蒸LC50分别为772,23705,4328 μL・L-1, 对赤拟谷盗的熏蒸毒力最高;对赤拟谷盗、玉米象和绿豆象的触杀LC50分别为271×10-4,140×10-5,235×10-5 μL/头,对玉米象的触杀毒力最高。

4总结与讨论

一枝黄花属植物种类繁多,化学成分丰富,含大量黄酮、二萜、三萜、三萜皂苷、苯甲酸、苯甲酸苄酯类及挥发油等化学成分,具有抗菌、抗炎、抗肿瘤、抗氧化、平喘、抑制脂肪形成、保护心脏和抗虫等多种药用和农用活性。

随着化学成分分析技术[3537]越来越成熟,对植物活性成分的分离鉴定也越来越全面。目前对加拿大一枝黄花[11, 23, 25]和毛果一枝黄花[13, 22]的化学成分及生物活性研究已经有较多报道,但对活性成分的具体作用机制研究仍然报道较少。对钝苞一枝黄花的化学成分研究,虽然王文杰[17]已进行了初步的系统研究,从钝苞一枝黄花中分离并纯化出17个单体化合物,但其挥发油等活性成分及生物活性的研究尚处于空白,有待进一步开发;一枝黄花的化学成分研究相对全面,在我国中药临床应用领域中占有独特优势,虽然现在一些研究表明一枝黄花具有多种生物活性[38],但其具体的作用机制尚不明确,仍需进一步探索。为综合利用及充分发挥该属植物资源作用,实现医用和农用等价值,需继续深入探索该属植物的化学成分的结构、生物活性及作用机制。

[参考文献]

[1]中国科学院中国植物志编辑委员会 中国植物志 第74卷[M] 北京:科学出版社, 1985

[2]王开金,列忠,俞晓平 一枝黄花属植物的化学成分和生物活性研究进展[J] 科技通报,2007(1):75

[3]王文杰,马腾,白虹,等 一枝黄花属植物二萜类化学成分及其药理活性研究进展[J] 齐鲁药事,2011(6):349

[4]杨如意, 昝树婷, 唐建军, 等 加拿大一枝黄花的入侵机理研究进展 [J] 生态学报, 2011, 31(4): 1185

[5]Weber E Strong regeneration ability from rhizome fragments in two invasive clonal plants (Solidago canadensis and Sgigantea) [J] Biological Invasions, 2011, 13(12):2947

[6]Lu J Potential distribution of Solidago canadensis in China [J] Acta Phytotaxonomica Sinica, 2007, 45(5):670

[7]毕玉科, 田旗, 卢钟玲, 等 舟山岛外来植物及其入侵性分析 [J] 福建林业科技, 2015, 42(1):151

[8]Yang R, Zhou G, Zan S, et al Arbuscular mycorrhizal fungi facilitate the invasion of Solidago canadensis L in southeastern China [J] Acta Oecologica, 2014, 61: 71

[9]白羽, 黄莹莹, 孔海南, 等 加拿大一枝黄花化感抑藻效应的初步研究 [J] 生态环境报,2012, 21(7): 1296

[10]钱慧, 李飞, 任勇, 等 加拿大一枝黄花花序中黄酮类化合物的抑菌及保鲜作用研究 [J]南京师大学报:自然科学版, 2015(3): 80

[11]Zeng Z, Ma W, Li Y, et al Two new diterpenes from Solidago canadensis [J] Helv Chim Acta, 2012, 95(7): 1121

[12]Yarnell E Botanical medicines for the urinary tract [J] World J Urol, 2002, 20(5): 285

[13]李涛, 白虹, 仲浩, 等 毛果一枝黄花化学成分及其抗炎活性研究 [J] 中草药, 2014(6): 749

[14]Sakaguchi S, Ito M Devlopment and characterizaion of ESTSSR markers for the Solidago virgaurea complex (Asteraceae) in the Japanese archipelago [J] Appl Plant Sci, 2014, doi: 103732/apps1400035 eCollection 2014

[15]Jaiswal R, Kiprotich J, Kuhnert N Determination of the hydroxycinnamate profile of 12 members of the Asteraceae family [J].Phytochemistry, 2011, 72(8): 781

[16]Jang Y S, Wang Z, Lee J, et al Screening of Korean natural products for antiadipogenesis properties and isolation of kaempferol3Orutinoside as a potent antiadipogenetic compound from Solidago virgaurea [J] Molecules, 2016, 21(2):226

[17]王文杰 钝苞一枝黄花化学成分研究 [D] 济南: 济南大学, 2012

[18]叶其蓁, 周子晔, 林观样 GCMS法测定一枝黄花花序和茎叶的挥发油成分 [J] 中国中医药科技, 2012(5): 434

[19]郭彦荣, 张岩, 宋桂华 清肺解毒汤加一枝黄花治疗儿童大叶性肺炎经验探析 [J] 中国中西医结合儿科学, 2015, 7(4): 401

[20]张孝云, 陆静波, 戴金花 一枝黄花含漱液在预防全麻术后禁食患者口腔黏膜炎中的应用 [J] 中华现代护理杂志, 2013, 19(4): 421

篇3

近年来生物黄酮化合物的研究取得了很多可喜成果,尤其在心血管、消化系统以及镇痛作用方面。本文就近年来相关研究及其临床应用进展综述如下。

1 心血管系统

1.1 沙苑子总黄酮沙苑子总黄酮(total flavonoid fractiono Astra)是从豆科植物扁茎黄芪的干燥成熟种子中分离而得, 早在20世纪80年代尹钟洙等[1]曾初步观察到静脉注射沙苑子水煎剂及其总黄酮可引起血压明显下降, 李景新等[2]报道沙苑子总黄酮对肾血管性高血压大鼠(RHR)有明显降压作用, 其机理可能与其降低血管紧张素(Ang)水平有关。吴捷等[3]认为沙苑子总黄酮能抑制心肌细胞钙离子内流。

1.2 沙棘总黄酮(TFH)沙棘在许多药理作用方面与银杏相近,而银杏(TFG)抗心脑缺血作用已在临床上广泛应用,王立群等[4]实验表明,TFH和TFG对离体大鼠工作心脏缺血后心功能及血流动力学各指标有不同程度的改善作用,主要表现在能明显减轻缺血后LVPSP,+dp/dtmax下降,TFH作用明显优于TFG。

黄酮具有抗氧化、消除自由基作用。吴英等[5]研究表明沙棘总黄酮对大鼠心肌缺血再灌注损伤时能明显减轻缺血再灌损伤区超微结构的病理改变,显著提高大鼠心肌组织SOD活性并减少MDA的生成。TFH对大鼠心肌缺血再灌损伤的保护作用可能与提高自由基清除酶活性及抑制脂质过氧化反应有关。

1.3 羊藿总黄酮许兰之等[6]研究了羊藿总黄酮(TFE)对肾上腺素能受体阻断作用,发现TFE选择性阻断离体及整体动物心肌β1受体,对气管β2受体和血管平滑肌α受体无阻断的作用, 此研究为临床应用羊藿治疗冠心病心绞痛提供了理论依据。

1.4 水杉总黄酮程虹等[7]报道用水杉总黄酮10 mg/kg ip可推迟乌头碱诱发的大鼠心律失常的出现时间,缩短持续时间;提高氯化钙诱发大鼠心律失常的阈剂量;增加哇巴因诱发豚鼠心律失常的用量;还能对抗心肌缺血复灌所致的大鼠心律失常,表明水杉总黄酮具有广泛的抗心律失常作用。水杉总黄酮能明显减少甲状腺素所致心脏肥厚大鼠心脏重量,缩短心肌纤维直径,减少心室蛋白质及RNA含量,降低心室Na+-K+ATP酶及Na+-Ca2+ATP酶活性, 表明水杉总黄酮对甲状腺素所致大鼠心脏肥厚具有抑制作用, 提示水杉总黄酮逆转心衰致心肌肥厚有一定的意义[8]。

2 消化系统

2.1 黄芩茎叶总黄酮黄芩茎叶总黄酮可剂量依赖性地抑制胆盐的吸收(P<0.01),其与考来烯胺的抑制胆盐吸收的作用相比,没有显著性差异(P>0.05)。提示抑制胆盐的吸收可能是黄芩茎叶总黄酮调血脂作用机理之一。黄芩茎叶总黄酮应用于降血脂和防治冠心病可能会优于考来烯胺。但黄芩茎叶总黄酮抑制胆盐吸收的同时,脂溶性维生素的吸收会不会受到抑制尚须进一步研究[9]。

我室近来研究表明皱皮木瓜提取物依剂量抑制胃肠运动; 抑制回肠自发性收缩反应和非竞争性拮抗乙酰胆碱诱导胃底平滑肌收缩的量效曲线;同时能减弱Ca2+所致兔回肠收缩, 木瓜提取物对胃肠平滑肌收缩的松弛与抗钙作用有关[10]。提示皱皮木瓜具有解痉作用。

3 镇痛抗炎

3.1 银杏叶总黄酮

在小鼠扭体模型上,皮下注射银杏叶总黄酮20~80 mg/kg,可显著减少小鼠扭体数,并且呈剂量依赖关系;在小鼠热板模型上,皮下注射和侧脑室注射银杏叶总黄酮均可显著地延长小鼠舔足潜伏期,结果表明银杏叶总黄酮有明显镇痛作用,其镇痛作用可能有中枢机制的参与[11]。

3.2 芦丁宋必卫等[12]对芦丁的镇痛作用研究结果表明芦丁(6.25~100 mg/kg,ip)呈剂量依赖性的抑制小鼠扭体反应;芦丁(50~100 mg/kg,ip)明显提高小鼠嘶叫刺激阀值,显著延长小鼠热板舔足反应潜伏期,表明芦丁有镇痛作用。其镇痛作用比阿斯匹林强, 但比吗啡弱。

3.3 木瓜野木瓜系木通科野木瓜属植物,具有祛风止痛功能。野木瓜对髓鞘和轴突膜有亲和力,可引起髓鞘和轴突膜结构的变化,从而导致神经传导阻滞[13]。我室实验结果表明:资木瓜提取物对醋酸、温度所致小鼠疼痛有较好的镇痛作用,但对二甲苯所致小鼠耳肿胀消肿作用很弱[14]。

3.4 荞麦叶总黄酮荞麦叶总黄酮(TFBL)能明显减轻肉芽肿的形成,降低毛细血管通透性和抑制耳肿,显示TFBL具有明显的镇痛抗炎作用[15]。其机制可能与TFBL所含的主要成分芦丁和槲皮素有关。据报道,槲皮素对12脂氧合酶的活性有很强的抑制作用,可影响花生四烯酸的代谢过程。芦丁、槲皮素镇痛机制还与钙离子拮抗有关 。TFBL具有清除自由基,抗脂质过氧化作用[16],可能也参与抗炎作用,有待深入研究。荞麦叶资源丰富,其提取的TFBL几乎无毒,值得进一步开发利用。

3.5 黄蜀葵花总黄酮(TFA)黄蜀葵花总黄酮TFA(ig或ip)可不同程度地抑制小鼠扭体反应;TFA(140,280 mg/kg,ig)可使福尔马林致小鼠疼痛的Ⅰ、Ⅱ相反应明显减轻,TFA(ip)对同侧ip福尔马林导致的疼痛可产生同样抑制作用,但对侧ip福尔马林致小鼠疼痛无明显影响;动脉注射TFA 200 mg/kg可明显减轻KCl诱发的家兔疼痛反应;连续用药可使TFA在小鼠跳跃实验中阳性率为0。以上研究结果表明TFA有一定的镇痛作用且局部给药有效,连续用药无成瘾性。TFA的镇痛机制可能既不同于阿片类药物,也不同于非甾体抗炎药,是一个镇痛机制值得进一步探讨的新型镇痛药物[17]。

3.6 蜂胶总黄酮(TFP)蜂胶总黄酮具有广泛的生物活性如镇痛作用等。注射TFP后能减少小鼠扭体次数。热板实验结果也表明TFP可延长小鼠舔足潜伏期,即延缓疼痛反应。甲醛致痛模型结果表明,注射TFP后在第一时相对小鼠疼痛反应无明显影响,但可显著降低第二时相的疼痛反应。说明TFP对炎症所致疼痛反应有明显镇痛作用。icv TFP低剂量(为ip给药剂量的1/20,即5 mg/kg)时,即可延长温浴致小鼠缩尾反应潜伏期,提示TFP对小鼠具有中枢性镇痛作用。已知NO在外周和中枢中以不同水平参与痛觉的调节。高剂量TFP在抑制小鼠热板反应时能降低小鼠脑组织NO的含量,提示TFP镇痛作用可能与抑制小鼠脑组织中NO的释放有关;另外,ip TFP在抑制小鼠热板反应同时,可降低脑组织、血清中MAD含量,提示TFP的镇痛作用与抑制自由基及其过氧化物产生也有一定关系。PEGz是一种非常重要的疼痛介质之一,PEG 的外周致痛作用早已明确。ip TFP可降低脑组织和血清中的PEGz含量,提示TFP的镇痛作用与抑制PEG 合成也有一定关系。TFP在多种疼痛动物模型中均表现出明显的镇痛作用,并可能通过降低脑组织中NO,MAD,PEG 含量和血中的MAD,PEG 含量而发挥镇痛作用。至于其确切的镇痛机制还有待进一步的研究[18]。

4 其他

金丝桃苷、芸香苷及槲皮素等有良好的镇痛作用[19],其作用机制与Ca2+拮抗有关,尤其是Hyp不仅在多种全身镇痛模型上有作用,而且在兔隐神经放电,兔耳K+皮下渗透等局部致痛模型上更有良好的局部镇痛作用[20],其作用机制与吗啡和阿斯匹林皆不同,系一新型的镇痛药。

综上所述,生物总黄酮来源广泛,具有镇痛消炎等多种药理作用,有的甚至在临床上得到广泛应用,是一大类值得进一步研究和开发的药物。

参考文献

[1]Yin ZZ,Chen SH,Ma BB.Pharmacological studies of totalFlavonoid fraction of Astragalus complanatus[J].R. Brown. Pharmacol Clin Chin Mater Med,1988,4(4):26.

[2]李景新,薛 冰,陈连璧,等.沙苑子总黄酮对高血压大鼠的降压作用及血管紧张素含量的影响[J].中国药理学与毒理学杂志,2002, 16(5):336.

[3]吴 捷,于晓江,马 欣,等.沙苑子总黄酮对豚鼠心室肌和培养大鼠心肌细胞电生理作用[J].中国药理学通报,1994,15(4):343.

[4]王立群,郑金生.沙棘总黄酮(TFH)与银杏总黄酮(TFG)心血管药效学的对比研究[J].中国煤炭工业医学杂志,2002,5(12):1205.

[5]吴 英,王秉文,王 毅,等. 沙棘总黄酮对大鼠心肌再灌注损伤的保护作用[J].中国药理学通报,1997,13(1):53.

[6]许兰之,陈维宁. 羊藿总黄酮对肾上腺素β1受体的特异性阻断作用[J].中国药理学通报,1994,10(4):311.

[7]程 虹, 刘惟莞,陈 翔,等.水杉总黄酮抗实验性心律失常的作用[J].湖北医科大学学报,1999,20(1):28.

[8]程 虹,刘惟莞,屠治东,等. 水杉总黄酮对甲状腺素所致大鼠心脏肥厚的抑制作用[J].中国药理学通报, 2000,16(3):277.

[9]周崇坦,冯 军,刘朝晖 ,等.黄芩茎叶总黄酮对离体大鼠回肠胆盐吸收的影响[J].陕西医学杂志,2003,32(12):1093.

[10]杨兴海,柳 蔚,钱京萍,等.资木瓜乙醇提取物对胃肠平滑肌的实验研究[J].四川中医,2004,22(3):116.

[11]陈志武,方 明,马传庚,等.银杏叶总黄酮的镇痛作用[J].安徽医科大学学报,1997,32(1):15.

[12]宋必卫,等.芦丁镇痛作用[J].安徽医科大学学报,1995;30(3):177.

[13]叶文博,张慧绮,金荣华,等.野木瓜皂甙对大鼠神经髓鞘和轴突膜的作用[J].神经解剖学杂志,2003,19(3):311.

[14]柳蔚,杨兴海,钱京萍,等. 资木瓜乙醇提取物镇痛抗炎作用的实验研究[J]. 四川中医,2004,22(8):6.

[15]王元福.甜荞麦叶总黄酮镇痛抗炎作用的实验研究[J].上海中医药杂志,2004,38(11):55.

[16]韩淑英,朱丽莎,刘淑梅,等.荞麦叶总黄酮调血脂及抗脂质过氧化作用[J].中国煤炭工业医学杂志,2002,5(7):711.

[17]范 丽,董六一,陈志武,等.黄蜀葵花总黄酮镇痛作用研究[J].中药药理与临床,2003;19(1):12.

[18]张 波,王东风,王 爽,等. 蜂胶总黄酮镇痛作用及其机制研究[J].中国药房,2005,16(19):1458.

友情链接