首页 公文范文 大数据分析统计

大数据分析统计汇编(三篇)

发布时间:2024-02-22 14:59:02

绪论:一篇引人入胜的大数据分析统计,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

大数据分析统计

篇1

重构随着信息科学技术的高速度发展,当代获取和储存数据信息的能力不断增强而成本不断下降,这为大数据的应用提供了必要的技术环境和可能.应用大数据技术的优势愈来愈明显,它的应用能够帮助人类获取真正有价值的数据信息.近年来,专家学者有关大数据技术问题进行了大量的研究工作[1],很多领域也都受到了大数据分析的影响.这个时代将大数据称为未来的石油,它必将对这个时代和未来的社会经济以及科学技术的发展产生深远的意义和影响.目前对于大数据概念,主要是从数据来源和数据的处理工具与处理难度方面考虑,但国内外专家学者各有各的观点,并没有给出一致的精确定义.麦肯锡全球数据分析研究所指出大数据是数据集的大小超越了典型数据库工具集合、存储、管理和分析能力的数据集,大数据被Gartner定义为极端信息管理和处理一个或多个维度的传统信息技术问题[23].目前得到专家们认可的一种观点,即:“超大规模”是GB级数据,“海量”是TB级数据,而“大数据”是PB及其以上级别数据[2].

一些研究学者把大数据特征进行概括,称其具有数据规模巨大、类型多样、可利用价值密度低和处理速度快等特征,同时特别强调大数据区别于其他概念的最重要特征是快速动态变化的数据和形成流式数据.大数据技术发展所面临的问题是数据存储、数据处理和数据分析、数据显示和数据安全等.大数据的数据量大、多样性、复杂性及实时性等特点,使得数据存储环境有了很大变化[45],而大部分传统的统计方法只适合分析单个计算机存储的数据,这些问题无疑增加了数据处理和整合的困难.数据分析是大数据处理的核心过程,同时它也给传统统计学带来了巨大的挑战[6].产生大数据的数据源通常情况下具有高速度性和实时性,所以要求数据处理和分析系统也要有快速度和实时性特点,而传统统计分析方法通常不具备快速和实时等特点.基于大数据的特点,传统的数据统计理论已经不能适应大数据分析与研究的范畴,传统统计学面临着巨大的机遇与挑战,然而为了适应大数据这一新的研究对象,传统统计学必须进行改进,以继续和更好的服务于人类.目前国内外将大数据和统计学相结合的研究文献并不多.本文对大数据时代这一特定环境背景,统计学的抽样理论和总体理论的存在价值、统计方法的重构及统计结果的评价标准的重建等问题进行分析与研究.

1传统意义下的统计学

广泛的统计学包括三个类型的统计方法:①处理大量随机现象的统计方法,比如概率论与数理统计方法.②处理非随机非概率的描述统计方法,如指数编制、社会调查等方法.③处理和特定学科相关联的特殊方法,如经济统计方法、环境科学统计方法等[7].受收集、处理数据的工具和能力的限制,人们几乎不可能收集到全部的数据信息,因此传统的统计学理论和方法基本上都是在样本上进行的.或者即使能够得到所有数据,但从实际角度出发,因所需成本过大,也会放弃搜集全部数据.然而,选择最佳的抽样方法和统计分析方法,也只能最大程度还原总体一个特定方面或某些方面的特征.事实上我们所察觉到的数据特征也只是总体大量特征中的一小部分,更多的其他特征尚待发掘.总之,传统统计学是建立在抽样理论基础上,以点带面的统计分析方法,强调因果关系的统计分析结果,推断所测对象的总体本质的一门科学,是通过搜集、整理和分析研究数据从而探索数据内部存在规律的一门科学.

2统计学是大数据分析的核心

数的产生基于三个要素,分别是数、量和计量单位.在用数来表示事物的特征并采用了科学的计量单位后,就产生了真正意义上的数据,即有根据的数.科学数据是基于科学设计,通过使用观察和测量获得的数据,认知自然现象和社会现象的变化规律,或者用来检验已经存在的理论假设,由此得到了具有实际意义和理论意义的数据.从数据中获得科学数据的理论,即统计学理论.科学数据是通过统计学理论获得的,而统计学理论是为获得科学数据而产生的一门科学.若说数据是传达事物特征的精确语言,进行科学研究的必备条件,认知世界的重要工具,那么大数据分析就是让数据最大限度地发挥功能,充分表达并有效满足不同需求的基本要求.基于统计学的发展史及在数据分析中的作用,完成将数据转化为知识、挖掘数据内在规律、通过数据发现并解决实际问题、预测可能发生的结果等是研究大数据的任务,而这必然离不开统计学.以大数据为研究对象,通过数据挖掘、提取、分析等手段探索现象内在本质的数据科学必须在继承或改进统计学理论的基础上产生.

统计数据的发展变化经历了一系列过程,从只能收集到少量的数据到尽量多地收集数据,到科学利用样本数据,再到综合利用各类数据,以至于发展到今天的选择使用大数据的过程.而统计分析为了适应数据可观察集的不断增大,也经历了相应的各个不同阶段,产生了统计分组法、大量观察法、归纳推断法、综合指标法、模型方程法和数据挖掘法等分析方法,并且借助计算机以及其他软件的程度也越来越深.300多年来,随着数据量以指数速度的不断增长,统计学围绕如何搜集、整理和分析数据而展开,合理构建了应用方法体系,帮助各个学科解决了许多复杂问题.现在进入了大数据时代,统计学依旧是数据分析的灵魂,大数据分析是数据科学赋予统计学的新任务.对于统计学而言,来自新时代的数据科学挑战有可能促使新思想、新方法和新技术产生,这一挑战也意味着对于统计学理论将面临巨大的机遇.

3统计学在大数据时代下必须改革

传统统计学是通过对总体进行抽样来搜索数据,对样本数据进行整理、分析、描述等,从而推断所测对象的总体本质,甚至预测总体未来的一门综合性学科.从研究对象到统计结果的评判标准都是离不开样本的抽取,完全不能适应大数据的4V特点,所以统计学为适应大数据技术的发展,必须进行改革.从学科发展角度出发,大数据对海量数据进行存储、整合、处理和分析,可以看成是一种新的数据分析方法.数据关系的内在本质决定了大数据和统计学之间必然存在联系,大数据对统计学的发展提出了挑战,体现在大样本标准的调整、样本选取标准和形式的重新确定、统计软件有待升级和开发及实质性统计方法的大数据化.但是也提供了一个机遇,体现在统计质量的提高、统计成本的下降、统计学作用领域的扩大、统计学科体系的延伸以及统计学家地位的提升[7].

3.1大数据时代抽样和总体理论存在价值

传统统计学中的样本数据来自总体,而总体是客观存在的全体,可以通过观测到的或经过抽样而得到的数据来认知总体.但是在大数据时代,不再是随机样本,而是全部的数据,还需要假定一个看不见摸不着的总体吗?如果将大数据看成一个高维度的大样本集合,针对样本大的问题,按照传统统计学的方法,可以采用抽样的方法来减少样本容量,并且可以达到需要的精度;对于维度高的问题,可以采取对变量进行选择、降维、压缩、分解等方法来降低数据的复杂程度.但实际上很难做得到,大数据涵盖多学科领域、多源、混合的数据,各学科之间的数据融合,学科边界模糊,各范畴的数据集互相重叠,合成一体,而且大数据涉及到各种数据类型.因此想要通过抽样而使数据量达到传统统计学的统计分析能力范围是一件相当困难或是一件不可能的事.大量的结构数据和非结构数据交织在一起,系统首先要认清哪个是有价值的信息,哪个是噪声,以及哪些不同类型的数据信息来自于同一个地址的数据源,等等,传统的统计学是无法做到的.在大数据时代下,是否需要打破传统意义的抽样理论、总体及样本等概念和关系,是假设“样本=总体”,还是“样本趋近于总体”,还是不再使用总体和样本这两个概念,而重新定义一个更合适的概念,等等.人们该怎样“安排”抽样、总体及样本等理论,或人们该怎样修正抽样、总体、样本的“公理化”定义,这个问题是大数据时代下,传统统计学面临改进的首要问题.

3.2统计方法在大数据时代下的重构问题

在大数据时代下,传统的高维度表达、结构描述和群体行为分析方法已经不能精确表达大数据在异构性、交互性、时效性、突发性等方面的特点,传统的“假设-模型-检验”的统计方法受到了质疑,而且从“数据”到“数据”的统计模式还没有真正建立,急切需要一个新的理论体系来指引,从而建立新的分析模型.去除数据噪声、筛选有价值的数据、整合不同类型的数据、快速对数据做出分析并得出分析结果等一系列问题都有待于研究.大数据分析涉及到三个维度,即时间维度、空间维度和数据本身的维度,怎样才能全面、深入地分析大数据的复杂性与特性,掌握大数据的不确定性,构建高效的大数据计算模型,变成了大数据分析的突破口.科学数据的演变是一个从简单到复杂的各种形式不断丰富、相互包容的过程,是一个循序渐进的过程,而不是简单的由一种形式取代另一种形式.研究科学数据的统计学理论也是一样,也是由简单到复杂的各种形式相互包容、不断丰富的发展过程,而绝不是完全否定一种理论、由另一种理论形式所代替.大数据时代的到来统计学理论必须要进行不断的完善和发展,以适应呈指数增长的数据量的大数据分析的需要.

3.3如何构建大数据时代下统计结果的评价标准框架

大数据时代下,统计分析评价的标准又该如何变化?传统统计分析的评价标准有两个方面,一是可靠性评价,二是有效性评价,然而这两种评价标准都因抽样而生.可靠性评价是指用样本去推断总体有多大的把握程度,一般用概率来衡量.可靠性评价有时表现为置信水平,有时表现为显著性水平[8].怎么确定显著性水平一直是个存在争议的问题,特别是在模型拟合度评价和假设检验中,因为各自参照的分布类型不一样,其统计量就不一样,显著性评价的临界值也就不一样,可是临界值又与显著性水平的高低直接相关.而大数据在一定程度上是全体数据,因此不存在以样本推断总体的问题,那么在这种情况下,置信水平、可靠性问题怎么确定?依据是什么?有效性评价指的是真实性,即为误差的大小,它与准确性、精确性有关.通常准确性是指观察值与真实值的吻合程度,一般是无法衡量的,而精确性用抽样分布的标准差来衡量.显然,精确性是针对样本数据而言的,也就是说样本数据有精确性问题,同时也有准确性问题.抽样误差和非抽样误差都可能存在于样本数据中,抽样误差可以计算和控制,但是非抽样误差只能通过各种方式加以识别或判断[910].大多数情况下,对于样本量不是太大的样本,非抽样误差可以得到较好的防范,然而对于大数据的全体数据而言,没有抽样误差问题,只有非抽样误差问题,也就是说大数据的真实性只表现为准确性.但是由于大数据特有的种种特性,使得大数据的非抽样误差很难进行防范、控制,也很难对其进行准确性评价.总之,对于大数据分析来说,有些统计分析理论是否还有意义,确切说有哪些统计学中的理论可以适用于大数据分析,而哪些统计学中的理论需要改进,哪些统计学中的理论已不再适用于大数据统计研究,等等,都有待于研究.所以大数据时代的统计学必是在继承中求改进,改进中求发展,重构适应大数据时代的新统计学理论.

4结论

来自于社会各种数据源的数据量呈指数增长,大数据对社会发展的推动力呈指数效应,大数据已是生命活动的主要承载者.一个新事物的出现,必然导致传统观念和传统技术的变革.对传统统计学来说,大数据时代的到来无疑是一个挑战,虽然传统统计学必须做出改变,但是占据主导地位的依然会是统计学,它会引领人类合理分析利用大数据资源.大数据给统计学带来了机遇和挑战,统计学家们应该积极学习新事物,适应新环境,努力为大数据时代创造出新的统计方法,扩大统计学的应用范围.

参考文献:

[1]陈冬玲,曾文.频繁模式挖掘中基于CFP的应用模型[J]沈阳大学学报(自然科学版),2015,27(4):296300.

[3]卞友江.“大数据”概念考辨[J].新闻研究导刊,2013,35(5):2528.

[5]靳小龙,王元卓,程学旗.大数据的研究体系与现状[J].信息通信技术,2013(6):3543.

[6]覃雄派,王会举,杜小勇,等.大数据分析:Rdbms与Mapreduce的竞争与共生[J].软件学报,2012,23(1):32-45.

[7]游士兵,张佩,姚雪梅.大数据对统计学的挑战和机遇[J].珞珈管理评论,2013(2):165171.

篇2

统计应用作为数学的重要领域,在大多数情况下,数据被收集并且通过一定方法在系统中存储,重要策略被记录,并应用于其他领域。随着数据恢复方法和统计分析方法的逐步集成,大数据的统计数据分析方法在财务管理中变得越来越重要。面对当今全球化的压力和经济市场的激烈竞争,使用财务管理的统计整合是提高有效管理效率,优化资源分配和科学行为的有效步骤。通过市场经济的发展和经济水平的不断提高,数据集成和财务管理水平运用了大数据的统计分析。在建立大规模数据的经济增长政策时,技术在宏观经济研究中起着重要作用。大数据统计分析的作用正在增加,其在管理中的用途正在进一步扩大。显然,加强对经济发展大数据统计分析技术的使用对促进经济增长和提高管理效率非常重要。

一、大数据统计分析方法在经济管理领域运用的意义

为响应市场环境和公司治理内容的变化而促进使用公司治理统计数据的需求主要体现在两个方面:

(一)宏观经济方面发展有若干规律。为了寻找有关经济发展的规律,强大的数据分析技术在宏观经济学中的应用非常重要。一方面,大数据分析统计数据用于从宏观经济发展行业收集数据,对相关行业信息进行实证分析,并调查行业发展和行业问题。使用SPS,Stata和其他数据分析软件,中国拥有最重要的发展法;同时,发现工业发展规律,规范工业发展,开辟新的经济发展方式也很重要[1]。

(二)企业经营管理方面1.提升企业竞争力的必然要求当前,业务发展的竞争越来越激烈。竞争压力主要归因于国内市场经济带来的经济化以及国内市场竞争激烈加入的外国公司的影响。公司必须面对激烈的市场竞争。大众市场信息的统计分析将调整生产和管理策略,并为业务发展的战略调整作出有效的决策。2.提升企业管理水平的必然要求一方面,诸如运营管理、财务管理、风险管理和企业资源管理等相关任务变得越来越复杂。需要统计分析方法来对丰富的业务操作信息进行分类和汇总,为业务管理决策提供有效的信息。同时,企业需要不断满足产品和服务生产方向的政治要求。由于需要与相关部门合作,例如运营财务管理、规避财务风险,因此需要建立相关部门的统计数据,以提高决策效率[2]。

二、大数据统计分析方法在经济管理领域的运用

利用大数据的统计数据分析技术研究宏观经济发展政策,对促进行业发展至关重要。另一方面,如何获取有关复杂数据管理的重要信息,在业务流程和管理方面为公司制定有效的决策是重中之重。关键在于掌握财务管理的大数据分析方法,并使用大数据统计分析技术来分类和提供业务流程管理,隐藏的规则以及来自异常数据点的大量信息。为了应对突况,管理人员需要制订正确的决策计划。本文主要讨论宏观经济应用管理领域的统计数据分析方法,以及业务管理、财务管理、风险管理和管理的六个方面。如:

(一)宏观经济方面关于宏观经济产业的运作和发展有若干规律。为了找到宏观经济发展方法,统计分析技术对于稳定经济增长和调查潜在的经济危机很重要。当前,不仅学者,业务经理也开始了解计算机技术的使用,并开始通过统计分析来发现工业发展中的若干问题,学习工业发展的原理。为了找出答案,我们选择了相关的影响因素并采取了相应的行动,采取措施提高工业发展效率。

(二)企业运营管理方面通常,在日常工作程序和工作相关领域中存在某些特定的业务管理和操作规则。另一方面,通过将统计信息应用于业务的运营和管理,公司可以通过分析大数据的统计信息来获得规律。这将帮助公司节省一些资源,避免重复的任务并节省公司的业务资源。如果该政策是从科学的统计评估阶段得出的,则情况与正常情况不同的企业高管应仔细考虑潜在的风险。

(三)企业营销管理方面企业需要建立大型数据管理系统来收集有关企业提供的产品或服务的市场交易信息。因此,消费者的热点必须与受管理的信息系统对齐,以使其隐藏在协同交易信息中。确定消费者对需求的偏好并确定消费者需求。公司的主要产品和服务根据消费者的喜好运作,可以满足消费者的需求,替代市场上的非反应性产品和服务。同时,开发新产品和服务企业领导者可以提供有效的决策信息,并为消费者创建新的热点[3]。

(四)企业财务管理方面应用管理统计信息。它通过审查有关生产过程和运营的统计数据(尤其是财务数据),进行定性和定量分析,帮助评估相关活动,例如商业投资。财务管理是开展业务必不可少的部分,这对于减轻公司的财务风险和提高公司资源分配的效率至关重要。通过统计分析对商业经济数据进行分类和分析,可以为高管、投资者和其他相关利益相关者提供有效的决策信息。

(五)企业人力资源管理方面将统计应用于公司的人力资源管理,并使用统计分析技术结合公司业务管理部门的特征,选择适当的方法来提高效率。人力资源管理很重要,人才基本上是企业的无形资产,在部门保留相关的人力资源是业务发展的关键。回归站评估法用于预测企业发展的人力资源需求,动态分析法用于根据状态预测人力资源的变化。将这两个方面结合起来可以大大提高业务资源的效率。

(六)企业风险管理方面使用统计分析技术对业务流程中的大量业务信息进行分类和分析,发现隐藏的规则和数据差异。重要的是,业务主管需要进行预测,做出正确的决定,解决事件并发现潜在危险。意思是如果统计数据分析有些奇怪,则需要找出业务流程中具有的某些规则,因此业务主管需要寻找更多异常条件,尤其是财务管理,要注意关注状态的变化。另一方面,对公司财务信息进行统计分析是公司规避财务风险的有效手段之一。

三、完善大数据统计分析方法在经济

管理领域运用的措施在本文中,我们将了解如何从六个方面分析大数据的统计数据:宏观经济活动、业务管理、风险管理、财务管理、资源管理和财务管理人员。这被认为是财务管理数据大规模统计方法的一种改进。必须在三个方面进行现场应用:

(一)社会宏观经济层面尽管存在宏观经济法则,但根据过去的经验,由于缺乏安全可靠的数据和分析方法,宏观经济法则的分析则一直被认为是伪科学。大数据分析技术提供了探索宏观经济法则的机会,大数据技术使用数据创建系统,而使用许多信息技术的科学分析是宏观经济法研究中的重要一步。特别是,某些行业使用行业信息和对经济趋势预测的全面分析来帮助识别和克服复杂的工业发展挑战,可以提高宏观经济发展效率。

(二)企业经营管理层面在公司上载和数据受限的情况下,企业很难优化管理功能以提高性能[2]。由于业务经理的管理理念和管理水平受到限制,因此很难断定业务开发操作和管理流程是否存在问题。统计分析技术可用于计算和评估每个关键决策或业务战略适合性的有效性。如果由于大数据分析技术而导致预期的数据销量存在矛盾,该公司可以调整其总体战略并进行业务变更以优化管理理念。

(三)行业与行业之间存在着一定的鸿沟无论是快速消费品行业、食品行业还是大型公司,其经营理念和经济结构在公司治理方面都存在根本差异。统计数据分析技术使公司能够了解整个行业的消费者需求的性质,分析社会经济状况,能够了解共同的业务条件和业务发展情况,并优化或区分劣质产品。在某些情况下,此更改是提高产品价格的高级更改,如果消耗量和消耗品减少,则可以降低产品价格。产品必须能够升级以满足顾客需求。产品行业、食品行业或大型行业具有不同的经营理念和财务结构,还在进行公司管理。但是,各个行业的业务方向取决于消费者的需求。换句话说,公司开发了产品的功能并使产品的功能适应消费者的需求。对于公司而言,通过优化生产结构并提供更多定价和功能来说服更多消费者也很重要。

(四)企业财务管理层面财务管理贯穿公司治理的整个过程。公司财务管理非常有效,但是存在诸如财务管理的巨大风险之类的问题。对公司财务信息进行统计分析是防范财务风险的有效手段之一。公司需要管理其日常收入和支出,并进行大规模会计处理。企业可以使用大数据分析技术来监测财务管理功能并确保标准化业务的财务安全。利用统计分析技术和大数据,公司可以预测潜在的市场和行业风险,以提供最佳解决方案,还可以提供分析大数据的方法,可以跟踪异常并快速发现异常。

四、结语

本文首先从宏观经济方面、企业经营管理方面等两个方面对大数据统计分析方法在经济管理领域运用的意义进行了分析,然后从宏观经济方面、企业运营管理方面、企业营销管理方面、企业财务管理方面、企业人力资源管理方面以及企业风险管理方面等方面对大数据统计分析方法在经济管理领域的运用进行了分析,最后从社会宏观经济层面、企业经营管理层面、行业与行业之间存在着一定的鸿沟以及企业财务管理层面等方面提出了完善大数据统计分析方法在经济管理领域运用的措施。大数据分析技术被广泛用于宏观经济预测、业务管理和公司风险管理,它在优化公司治理和运营结构,有效改善公司治理以及提高公司统一性和核心竞争力等方面发挥着重要作用,可以使公司在激烈的市场竞争中有一席之地。

【参考文献】

[1]张琳.大数据统计分析方法在经济管理领域中的运用浅析[J].营销界,2019(38):291-292.

[2]杜珉.大数据统计分析方法在经济管理领域中的运用探析[J].山西农经,2019(12):27.

[3]陈雪琴.大数据统计分析方法在经济管理领域中的应用[J].山西农经,2019(5):37.

篇3

数据爆炸具三维特点,所谓三维多指除数据量迅速增多外,还指数据多样性以及数据资源的增长速度不断加快。从数据发展到大数据即是数据质量的飞跃更是量的积累,大数据能条理清晰的把不同形式、不同来源以及不同信息的诸多数据进行分析、整合,把先前孤立的部分数据互通互联,全面客观地诠释某个现象、某个事物的具体细节与整体情况,这是小数据时代难以比拟的新兴知识。大数据属于非竞争性资源,具重复使用以及不断产生新资源的优势,所以大数据在各个领域可创造新兴的重要价值。

一、大数据成为政府统计新趋势

大数据的时代,政府合理运用大数据,已从粗放型转变为集约型。部分发达国家在政府统计与大数据结合方面位于前列,在美国政府所提出的大数据发展计划与研究中,通过HPSS系统对数据流的即刻分析、可扩展性分析技术与数据缩减技术,对海量数据进行的分析处理,可提高能耗预警能力以及扩展能源统计领域。国家统计局已与阿里巴巴(中国)有限公司、山东卓创资讯集团有限公司等十几家企业签订了大数据战略合作框架协议,共同推进大数据在政府统计中的应用,不断增强政府统计的科学性和及时性。

二、大数据背景下统计创新能力的重要性

大部人认为大数据时代全体等同于样本,得到的数据是全数据而不是抽样性数据,因此进行简单的结算即可,无需系统地进行统计分析。事实上这种观点较为片面,因为大数据仅告知信息并不解释相应的信息内容,研究大数据时若无全面的科学数据指导,如同建造桥梁时不使用工程科学知识,继而造成严重后果和不良影响。随着万千事物的变化,全数据的不确定性较大,所以统计性数据分析是大数据迈向应用的关键点。

三、政府统计主导设立地域性数据中心

(一)政府统计主导,确保数据的准确性

政府相关统计部门应坚持设立县域公共性数据中心主导地位,以提高数据的收集效率与权威性,保证数据真实而全面。例如数据青岛是由青岛市的统计局完全主导创建的数据中心,在数据青岛的基础层次上向县域性社会经济发展延伸到即墨市 “综合性数据信息平台”,该信息平台是由当地政府主导设立的数据中心,扩大数据信息覆盖层面的根本上,确保数据的准确性与权威性。

(二)一盘棋管理,确保数据质量

将“一表”“一库”和公共性数据中心进行数据互动,将数据维护基点进行细化,并分块管理数据,使源头数据的质量逐渐提高。从实践分析,由政府主导的相关数据中心需将基层建设完全落实到功能区统计、园区统计以及镇街统计,以网格化的管理提高数据中心的数据质量,避免数出无源、数出无据以及数出无门,以此提高统筹效率与数据采集效率。

(三)多方面进行合作,提高数据的全面性

开展与科研院所以及高校等部门数据中心的端口开放和合作,有选择性地与相关领域、相关行业以及相关县市数据中心实行数据互交,为数据研究提供全面客观的对比性依据。我国部分发达城市创建的大数据中心可将某些数据端口与研究所合作共同分享资源,即能借助研究所较为专业的数据资源丰富政府数据统计分析方法,又能弥补收集政府统计数据的不足。

(四)丰富公共服务中心数据的分类方式

可将财务报表、行政记录等初级统计资料和次级统计资料归纳至数据中心系统中,使信息检索功能得到强化,筛选并应用可用信息,提高数据真实性,数据服务形式逐渐丰富。

四、创建数据分析工具以及统计数据模式

对经济发展秩序的系统分析主要依赖于数据挖掘,现今数据已被更多的人认识,在生活、工作等各个方面的应用具重要价值,若依靠横向数据排名以及历史数据增长很难全面客观地显示出问题本质。科学合理的统计数据模式是探寻发展规律、探析数据的最重要手段。例如分析劳动工资数据时,应用明塞尔资本收益化函数或是C~D生产性函数分析数据,可得出地区不同的劳动力素养以及劳动生产几率对生产值的贡献力度,为劳动力部分政策提供参考依据。

(一)设立适宜各专业应用的数据分析模式

政府统计具较高的专业性,不同专业、不同领域创建的数据分析模式均不相同,通过数学模型筛选,创建专业化的数据分析模式,从不同时期、不同角度以及不同层面对专业化数据进行空间序列与时间序列的探析,非线性和线性回归参数检验与估计作用,达到对数据高质量、多角度的细致分析。就像应用欧氏距离检测典型结构与产业化内部结构的相似度,能够较为精准地展示产业结构的演变层次与发展水平,对产业化的结构层次具定量化评估。

(二)配套创建数据分析软件库

给予海量大数据高速计算是应用数据探析模式的一大特点,高速计算远超出人力计算范围,需采取相关分析软件辅助计算。使用C~D生产函数分析数据时需用到Eviews软件运算大数据。部分地区在实践中发现,数据分析软件的需求多表现为两个方面,一方面分析数据时常需要相关分析软件辅助计算,方可得到满意的分析成果;另一方面,相关数据分析软件的使用和获取存在一定难度,有些数据软件对硬件设备具较高要求,而且运算量极大,部分分析软件需在外文的指导下方可使用。所以应创建适宜各专业应用的数据探析软件库,为数据统计分析提供操作与技术支持。

五、多渠道深入递进数据

数据质量与数据时效性是数据统计分析的关键。随着社会经济的发展,数据每时每刻都在变化,行业风险、国际竞争以及相关政策出台对有些经济数据具一定影响。

(一)政策的跟进

尤其涉及新能源、战略性新兴产业、高新技术以及出口方面产业,地方与国家政府政策对企业经营发展具很大影响。政策跟进过程中需实时管理信息公布平台,与部分主要门户网站合作创建信息交互体制,以便企业能够及时通晓政府的各类信息,把握产业相关政策动态。例如我国太阳能方面的光伏产业属于重点扶持产业,每年能够得到国家部分产业补贴,所以分析产业发展数据时需将产业补贴计算在内,否则容易对产业未来前景做出乐观估计。

(二)跟进企业发展

企业发展的受制因素较多,金融成本、商业风险以及经营策略对数据时效性具较大影响,对于部分县域政府统计,企业的发展数据跟进需要走进企业实地考察,以便掌握企业发展面临的困难与优势。同时还要通过社会考察了解企业信用、用工方面等诸多问题,预估数据的发展趋势,以此充分补充企业发展的数据分析内容。

(三)跟进产业环境

产业的服务机构、进出口以及地域等环境对企业经济发展具有影响,进而对需要进行分析的企业相关数据产生较大影响。想要跟进产业环境可通过相关信息渠道通晓国内产业发展与进出口环境现状,大致了解行业发展状态。同时还可深入研究企业园区等为企业在条件放宽、证件审核、进出口以及税收等方面提供各种优惠举措。

六、结束语

随着科技的进步与经济的发展,大数据时代逐渐融入到工作与生活当中。大数据时代的来临可称之为数字化革命,海量的数据资源致使政府、商界以及学术界开始迈入量化进程,为教育卫生、经济发展等社会方方面面的统计工作带来创新与机遇。

参考文献:

[1]飞.大数据时代工业统计创新能力的分析与研究[J].财经界,2015(19).

[2]王晨曦.大数据时代创新统计数据分析方式的思考[J].中国统计,2015(13).

[3]朱怀庆.大数据时代对本科经管类统计学教学的影响及对策[J].高等教育研究,2014(03).

友情链接