首页 公文范文 电力电子技术及其应用

电力电子技术及其应用汇编(三篇)

发布时间:2023-09-28 08:53:46

绪论:一篇引人入胜的电力电子技术及其应用,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

电力电子技术及其应用

篇1

当今社会正在处在一个信息技术不断更新发展的时期,电子科技技术的飞速发展给人们的日常生活带来了很大的便利,同时广泛应用于电气控制中,电气自动化控制系统是电气控制的一个主要系统,其对电气设备的正常运行可以进行有效的控制。随着科学技术的发展,各种新型的控制元件和应用软件不断应用于电气控制系统中,提升了整个系统的可靠性,精简了作业流程,提高了企业的生产效益。

1 电力电子技术概念和发展现状

1.1 电力电子技术概念

电力电子技术是一门广泛应用于电力系统的电子技术,其目的就是对电力系统中的电子元件进行有效的转换和控制,从而达到提高电力系统工作效率的目的。电力电子技术主要分为电力电子器件制造技术和变流技术两部分,在电气控制的过程中电力电子技术充当重要的角色。电力电子技术依靠电子学、电工原理和自动化控制技术三个领域的相互合作,在工业生产中对电气设备进行有效的控制,电力电子技术对电气系统中的电路进行数据检测、信息记录和故障预警等功能,对不同生产工艺的电力设备的运行情况进行监控。

1.2 电力电子技术的发展现状

电力电子技术的发展主要分为两个方面,分别为电子器件制造和电力电子电路应用,随着科学技术的不断发展,电力电子技术在这两方面有了很大的发展,电子器件的发展过程经过了不可控制性、半控制型和全控制型三个阶段,时至今日电力电子技术在电气控制中已实现了自动化控制,这不仅体现了电力电子技术的快速发展,还能在一定程度上促进电力电子技术的发展。现在出现一种智能化技术,其在电气控制中已逐渐得到应用,智能化技术的运用可以实现电气系统自动化控制,智能化技术通过对下降时间、鲁性棒变化和响应时间系统的控制,维持电气系统的顺利进行,智能化技术还可以对电气自动化系统进行数据监测和调节,在电气自动化系统中设立反馈机制,在故障发生时,电力设备可以进行自我调节,实现自我控制、自我调节,同时还减少了人力资源的消耗。目前电力电子技术已经形成了先进的功率集成电力,虽然以当前的技术水平使功率还处于一个较小值,但是随着电力电子技术的不断发展,提高电力功率只是一个时间问题。

2 电力电子技术在电气控制中的应用分析

电力电子技术在电气控制中的应用主要有软开关控制装置、电路保护装置、静止无功补偿装置、有源电力滤波器和高压直流输电技术等方面的应用,可以运用电力电子技术对电路进行有效控制并对电子元件的运行进行监控,提高电力系统的可靠度。

2.1 软开关控制装置

随着电子技术和电力系统的发展,电力系统对电磁兼容和效率的需求越来越大,这就要求电力装置满足轻便和小型的要求,传统的电力系统中通过开关控制来节省变压器和电容等元件的占用空间,但是这样高频率的开关转换会使其损耗过大,并会对电路的效率产生不利的影响,同时也会产生一些额外的电磁干扰。软开关控制装置很好地解决了这一缺陷,特别是在减少噪音和降低开关损耗上有很大的帮助,目前软开关控制装置用于很多电力系统中,研究表明在开关频率大于1Mhz的情况下,其性能也会达到理想的状态。将多个简单的电路通过串并联成一个组合电路的方法在很多情况下会提高电力系统的性能,软开关装置的应用越来越广泛。

2.2 电路保护装置

电气控制系统中电路保护装置占有重要的比例,当电力电子电路中的元件方式故障时可以对电路作出保o措施,常有的电路保护装置有电流继电器、快速熔断器等,但是随着电子技术的发展,电力电子元件趋向小型化和高功率化,传统的电路保护装置已经不能满足电力电子电路保护的需求。电力电子技术可以在电路中加入过电流保护电路,结合电路检测装置反馈的信息,在检测到电路中存在过电流时可以自动对电子元件进行断电处理,达到保护电路和电子元件的作用。

2.3 静止无功补偿装置

随着用电需求的增加,对电网功率变化的需求也不断增加,电网中功率的频繁变化和一些冲击性负荷的增加对电网的稳定性产生了很大的影响,不利于电网电路中低频振荡的有效控制,而通过静止无功补偿装置可以增大电力系统和负载的相关因数,降低电力系统中功率损耗值,同时还可以控制电路中电压的稳定性,提升电力使用质量。

2.4 有源电力滤波器

有源电力滤波器的工作原理是对电路中的补偿元件进行检测,从而得到一些等分量的谐波电流,然后再利用补偿装置产生一个与谐波电流分量相等极性相反的电流分量,使其与检测的谐波分量相抵消,使电网中的电流没有谐波电流只存在基波电流。有源电力滤波器以其响应速度快和补偿功能多样性的特点,可以有效地减少电网阻抗的影响。有源电力滤波器由两部分组成,分别为补偿电路发生装置和指令电流运算电路,通过电力电子技术对电路中的补偿电流进行检测,然后得出电路中无功电流和谐波的分量。

2.5 高压直流输电技术

现电厂输出的都是交流电压,但是交流输电过程会产生大量的电量损耗,并且不易控制,造价也很高,因此现在选用的都是直流输电,在高电压大容量和远距离的输电的情况下要选用直流输电,直流输电技术通过高压直流输电技术可以将交流电压转变为直流电压,然后直流电输送到各地的变电站内,再通过直流电逆变过程,转变为交流电,最后再供用户使用。

3 结束语

电力电子技术随着科学技术的进步不断发展变化,其在电气控制中的应用越来越广泛,并占有重要的作用,我们要深入研究电力电子技术在电气控制中的应用情况,查找电力电子技术应用的不足之处,充分发挥电力电子技术的优势,促进电气控制行业的发展。

参考文献

[1]浦仕琳.电力电子技术在电气控制领域中的应用[J].科技创新导报,2012(05):78.

[2]李敏.电力电子技术在电气工程中的应用[J].通讯世界,2015(23):124-125.

[3]胡欣然,张海涛,刘洋.电力电子技术在电气工程中的应用[J].山东工业技术,2016(13):178.

[4]樊清山.电力电子技术在电气工程中的应用[J].电子技术与软件工程,2014(12):197.

篇2

电力电子技术的高速发展,在给人们的生活工作带来更大便利的同时,也得到了电气控制领域的高度关注。作为电气控制的重要组成部分,电气自动化控制系统能有效保障电气设备运行的安全性和稳定性。随着科技的进步,更多先进的电力电子器件应用其中,对于提高整个电力控制系统的可靠性具有重要意义。

1电力电子技术的概念以发展历程

1.1概念

所谓的电力电子技术,就是指应用于电力领域的技术手段,其主要功能就是对电力系统中的原件配件实施有效的控制,以此来实现提升整个系统工作效率的目标。现阶段,电力电子技术主要分为两大类型,分别是器件研制技术以及变流技术。在电气控制领域,电力电子技术起着至关重要的作用,其通过结合电子学、电工学以及控制技术三大专业学科,对处于运行状态的电气设备实施有效地控制,同时也可实现对系统内部线路的信息监测、数据记录以及故障警报等功能,并对不同性质的电气设备实施实时监控。在实际应用过程中,电力电子技术表现出了极大的优势,其中包括有操作的便捷性以及强大的适应性,不仅能够进一步简化操作流程,方便工作人员的操作,提高人员的工作效率,进而提高电力系统的运行效率,更能适用于各种类型的工作环境,从而在根本上保障了电力系统的安全运行。

1.2发展历程

电力电子技术这一概念于20世纪60年代产生,一般认为1957年美国所研发的第一个晶闸管为第一个电力电子器件。1974年,美国学者将其描述为由电力学、电子学以及控制学三门学科所组成的全新科学领域。70年代后期相继出现了以GTO、BJT以及Power-MOSFET为代表的全控型器件,80年代后期又研发了以IGBT为代表的复合型器件。现阶段,为了减小电力电子设备的体积,将控制、功率、驱动以及保护电路等器件一体化形成了PIC,虽然目前PIC应用效果较差,但这是电力电子技术的未来重要发展方向。此外,在这一领域,计算机模拟和仿真技术也在持续发展中。

2电力电子技术在电气控制中的应用探究

2.1PWM控制技术的应用

PulseWidthModulation技术,即PWM控制技术,指的是通过调整对脉冲宽度的设置,以获取相对应波形的技术手段。这一控制技术的应用理论基础就是面积等效原理,简单来说就是,面积相同但形状不同的窄脉冲作用于拥有惯性的环节之上时能保证所导出的响应波保持一致性。现阶段,随着MOSFET以及IGBT技术的发展,PWM技术已广泛应用于各类变流电路之中,其中逆变电路在PWM技术应用上效果最佳,目前,除了特大功率的逆变设备之外,基本上所有的逆变电路都应用了PWM技术。

2.2软开关控制装置的应用

随着科学技术的不断前进,电力电子设备的发展趋势也越来越倾向于小型化和便捷化,因此,其对于电力系统的电磁兼容度和运作效率也提出了更高的要求。在以往的电力系统之中,往往应用开关控制来压缩变压器、滤波电感以及电容器配件的所占空间,但应用这种方式会造成极大的设备损耗,进而影响电路的正常运作,严重时甚至还会出现额外的电磁干扰现象,而通过应用基于电力电子技术的软开关控制装置则可有效解决这一问题,其可在一定程度上避免设备损耗以及电磁干扰等情况的出现。当开关频率大于1Mhz时,基于电力电子技术的软开关控制装置能达到最佳的工作状态,能将系统内的各类简单电路进行并联,以形成工作质量和效率更佳的组合电路,进而进一步提升整个电力系统的工作性能。现阶段,软开关控制技术的主要发展趋势如下:(1)这一技术将更为广泛地应用于IT行业,拓扑数量将不断增大;(2)谐振电路在开关频率大于1Mhz的工作环境中效果十分明显,因此,其必将得到更多的关注;(3)将更多地应用各种电路组合方式,如串联、并联等,以此来满足不同工作环境的需求。

2.3过电流保护装置的应用

在电力电子电力运行过程中,若出现故障便会引发过电流现象。针对这一现象,传统的解决方式往往是及时中断熔断器、电流继电器以及直流快速断路器等设备的手段来最大限度地维护电力电子系统中的重要电路。但目前,随着电力电子器件的小型化,再加上功率要求的不断提高,以往的电路保护装置已难以适应当下的保护需求。因此,驱动控制信号去除自动化技术开始进入人们的实现,具体来说就是通过安装专门的过电流保护装置,对过电流进行实时监控并及时对电路进行调整和驱动。例如,桥臂互锁保护法。当出现信号反复或开关延时过长等问题时,桥式逆变短路就会产生桥臂短路现象,通过应用桥臂互锁保护法,使其能在故障发生使迅速进行驱动信号的切除处理,应用联锁手段,通过连接桥臂上的部件来避免短路现象的出现。

2.4静止无功补偿装置的应用

社会经济的腾飞,使得人们的生活水平也稳步提高,与此同时,人们对于电力的需求量也越来越大,因此对于电网功率也提出了更高的要求。若电网中的运作功率出现较为频繁的变动或内部遭受部分负荷的强烈冲击等情况,这在很大程度上会影响到电网运行的安全性与稳定性,同时也会使得电网线路难以实现对低频振荡的有效控制。而基于电力电力技术的静止无功补偿装置则可有效提升电力系统的承载力以及相关性能,同时也能规避电力系统中的功率损耗现象,从而进一步增强电力系统性能的稳定性,以满足当今社会对于电量的需求。

2.5有源电力滤波器的应用

基于电力电子技术的有源电力滤波器的应用原理是通过分析和检测电力系统补偿元件的运行状态,进而从中获取相对应的等分量谱波电流,其后利用补偿装置生成与谱波电流的相反等分量电流,从而实现谱波电流与生成电流的相互抵消作用。通过应用该种方法,可以在根本上规避电网系统中谱波电流的产生,取而代之的是基波电流。基于电力电子技术的有源电力滤波器具有应答速度快、抗干扰性强等诸多优势,这一设备主要由补偿装置以及具有指令功能的运算电流电路两部分构成。通过应用有源电力滤波器,可以及时对电力系统中的补偿电流进行检测和分析,进而实时获取电网系统中的谱波电流以及无功电流的数量,从而在根本上保障了电力系统运行的安全性和可靠性。

2.6高压直流输电技术的应用

现阶段,我国的大部分发电厂所传输的基本上都是交流电压,但在交流电压的传输过程中往往会出现能源的大量损耗情况,同时工作人员也难以有效把控所消耗的能源,并且管控消耗能源所要投入的资金成本也较高。针对该种情况,目前已有众多发电厂开始改用直流电输电方式,通过应用基于电力电子技术的高压直流输电技术能够有效完成交流电与直流电的转换工作。一般情况下,直流输电方式应用于电压容量较大且所隔距离较远的输电装置之上,利用高压直流输电技术将交流电压无损耗地转变为直流电压,其后在经过直流电逆变过程转变为直流电,以此来为人们提供更为优质的用电服务。

3结论

总而言之,随着电力电子技术的持续进步,其在电气控制领域所发挥的作用也越发重要。为了更好地应用电力电子技术,发挥其真正的作用,相关科研人员必须基于目前的发展现状以及应用需求,对这一领域进行深入地研究,找出其存在的不足之处并加以调整和优化,从而进一步提升电力电子技术的应用效果。

参考文献

[1]万志豪.论电力电子技术在电气控制中的应用[J].电子技术与软件工程,2016(24):243.

篇3

一、电力电子技术在电气控制中的重要意义

当前,随着经济水平的不断提高,人们在日常生活与社会工作生产经营的过程中对于电力的需求在不断增加,电力系统的稳定安全为现代民生及市场经济发展有着重要的意义,而电力电子技术能够有效的满足这一电力需求,其分布在电力系统的各个环节中,能够细致深入的对其做好把控,当前在电力控制运用电力电子技术的过程中,其的本质是通过利用计算机和自动控制技术,并立足于此,实现对电能间的相互转换,在保障电气系统工作效率的基础上,还有效提升了电气系统的自控能力,从而不断提升服务的优质性与高效性,有效推动电力行业的长远持续发展,具体来看,其主要体现在以下两个方面:

首先,电力电子技术的实际运用能够有效提升电气系统的智能化水平,与此同时,电力电子器件在不断的研发与实验过程中也逐渐朝着多样化发展,其的智能化与自动化在很大程度上促进了电子技术的优化完善,从而为电气系统的智能化发展奠定了坚实的基础[1。

另一方面,电力电子技术在运用过程中,其具有一定的大功率特征,在其的推动下,有效改善了电系系统的工作效率,进一步提升了电能转换效率,在确保电气系统能够满足群众实际的电力需求的基础上,还在很大程度上改善了资源浪费的问题,有效提升了电力行业的经济效益与社会效益。

二、电力电子技术在电气控制中的实际运用

(一)软开关装置应用

随着电力电子技术的日益成熟与推广应用,电路信息处理水平也在不断提升,电气控制水平也在其的推动下得以改善,电力电子技术的实际优势得以充分发挥,有效的满足了控制性与兼容性的实际需求,基于此,电力企业要是重视对于电力装置的更新优化,从而结合自身实际情况,尽可能提升装置设备的智能化发展,为电气控制工作提供更强有力的支持,电气控制开关是电气控制中的一项重要工作,传统的电气控制开关不仅容易遭受电磁的侵扰,还会造成较大的能源消耗,电子技术的对于软开关控制装置的应用,能够有效改善这一状况,并合理针对噪音以及损耗问题进行控制,将电气控制中的各个电路进行重组,提升电力系统的稳定性。

(二)高压直流输电技术

对于电能的输出工作而言,其往往采用交流电压的方式,究其原因,是因为受到电能运输距离以及技术等相关因素的局限,但在采用交流电压进行电能输出的过程中,会导致较长的运输距离产生较大的电能消耗,并且难以实现对电能的有效控制,基于此,现阶段就可以采用高压直流输电技术实现对这一情况的改善,由此借助换流站的实际价值,从而实现交流电压向直流电压的转化,有效的推动电能运输工作的顺利开展,并在此基础上,借助多种电气设备,尽可能的降低运输过程中的能耗[2]。

(三)Pwm控制技术

在实际开展的电气控制过程中,对于脉冲的宽度实现调整改变,并在得到相应波形之后实现对第电力系统的调节目标可以通过PWM控制技术来落实,就目前掌握的情况来看,PWM控制技术是相对来说较为成熟的一种控制手段,其立足于面积等效理论基础上,已经得到了越来越多人的认同及运用,在其一系列优势的推动下,能够实现除电力系统中直流脉宽调整之外,能够充分发挥自身的运用价值,实现对于交变电流的控制。

(四)智能无功补偿装置

现存的电力系统中无功功率方面的问题,其主要包括两种类型,即容性无功以及感性无功,对于传统的无功补偿装置来说,其本身存在一系列弊端,从而导致无法保障电气系统的稳定性,而相较于这一装置,智能无功补偿装置,显然具有更高的应用优势,其能够在很大程度上实现对于谐波的一种,从而避免出现谐振的情况,有效提升了装置的稳定性,并且在职能无功补偿装置实际的运行过程中,其能够根据实际情况以及无功补偿需求实现感性无功以及容性无功之间的切换,有效优化控制系统,与此同时,若此过程中无人监管,还能够有效的针对无功率变化情况实现自动追踪处理,以此进一步提升了补偿的准确性,另一方面,在远距离电能输送的过程中,其也会相应产生无功功率,而智能无功补偿装置能够有效的抵消这一状态,从而为电能输送的质量以及品质提供支持与保障。

友情链接