发布时间:2023-10-05 10:23:38
绪论:一篇引人入胜的节能技术的好处,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

中图分类号 X505 文献标识码 A 文章编号 1673-9671-(2012)021-0159-01
人类的发展,离不开能源。但是,随着人类社会的发展,能源短缺成为世界性的问题。因此,当今社会开始提倡“节能降耗”理念,创新节能降耗技术,以期可以实现有效利用能源、降低能源消耗的目的。随着城市建设的不断加快,在城市污水处理问题上,也必须坚持节能降耗理念,应用节能降耗技术,提高污水处理厂的污水处理效率,降低污水处理厂运行的总耗能,进而促进污水处理厂经济效益的提高。
1 我国污水处理厂运行下的节能降耗技术
1)简述我国污水处理厂运行下的节能降耗技术的发展。随着经济全球一体化的逐步深入,全世界各个国家都在为节能降耗、促进经济发展做努力,相关技术人员积极创新能源利用理念,发展节能降耗技术,以实现缓解全球能源紧张局面的目的。在我国污水处理厂运行问题上,钱易院士、聂梅生先生等创新地提出清洁生产、可持续发展的污水处理技术,希望可以将节能降耗型污水处理技术的发展作为我国污水处理厂长期的努力方向。我国相关部门也颁布“新型、高效城市污水处理技术”文件,提出可持续发展的节能降耗技术在污水处理厂中的应用问题,并形成相关政策、法规,规范我国城市污水处理厂运行过程中节能降耗的效率。由此可将,我国对节能降耗技术发展的重视。相关科技人员经过不断地研究与改进,我国节能降耗技术在污水处理方面已经取得初步成果。截止到2007年底,全国城镇污水处理管理信息系统已经全线投入使用,并对全国各大污水处理厂的信息进行管理。其中最主要的就是管理污水处理厂运行下,各单元的能源物质消耗量,并根据这些数据,深入研究节能降耗技术,提高污水处理厂的运行效率,实现节能降耗的目的。
2)我国传统污水处理技术与节能降耗技术的比较。现阶段,污水处理厂作为处理城市污水最重要的场所,其污水处理手段受到社会各界的重视。因此,污水处理厂在节能降耗理念的指导下,以“少用或者不用不可再生资源、回收资源和产生的能源、无跨区污染”为原则,对城市污水进行有效地处理。传统的污水处理技术常常采用强氧化剂进行污水处理,这种技术具有很多弊病,比如,在处理污水时所需要的化学需氧量耗能巨大,一些硝化与氨化反应所需要的能量同样不可忽视;利用生物除磷法处理污水无法回收磷资源或者磷资源回收量少;另外,污水处理过程中,会产生大量的二氧化碳与污泥,这些物质影响大气环境与土壤、河流环境。与传统污水处理技术相比,节能降耗技术在处理污水过程中,应用厌氧技术处理污水以降低能量的消耗,并尽可能产生能源;将生物除磷法与化学除磷法相互结合,在有效去除磷的基础上,大量回收磷资源;同时,减少二氧化碳与污泥的产生量,并将产生的物质通过有效转化,变成可利用的能源物质。利用这种节能降耗技术处理污水,实际耗能大大的降低了,而且所需要的能源物质也在逐渐减少。
2 污水处理厂运行下,节能降耗技术的应用策略
在污水处理厂运行下,各级单元都在耗能,只是所消耗能源的总量不同而已。其中二级处理过程耗能量最大,占污水处理厂总耗能量的70%,其次是预处理单元,占20%。由此可见,在污水处理运行下,节能降耗技术应该重点应用在二级处理过程与预处理过程,对这两个单元的污水处理过程进行深入研究,针对节能潜力最大的部分加大节能降耗技术的投入力度,再对其他单元的设备运行等方面考虑节能降耗途径,从而提高污水处理效率,保证节能降耗目的的实现。
1)二级处理单元节能降耗技术应用途径。在二级处理单元处理污水过程中,对能源的消耗主要表现在处理设备消耗电能上,因此,本文首先对二级处理单元中各个设备的电能消耗过程进行分析。通常,污水处理厂中所用的设备为搅拌器、内回流污泥泵、外回流污泥泵、剩余污泥泵、鼓风机、二沉池刮泥机、加药泵几部分,这些部分对电能消耗的比例(相对二级处理总耗能来说)分别是13.5%、3.0%、7.1%、0.4%、75.3%、0.5%、0.2%,其中耗电能量最大的即是鼓风机。因此,要想有效提高二级处理单元的节能降耗效果,需要参考风量、风压、曝气量等参数,科学、合理地选择鼓风机,并建立精确的曝气流量控制系统,实现智能化曝气调节。并在处理设备中加设回收二氧化碳装置,以降低二氧化碳的产生量。同时还要控制污水处理厂的运行参数,将反应器单体在线数、单位溶剂能量输入、混合液水平等都控制在一定的数值之下,使这些处理组件的运行能够在保证处理污水效率的前提下,降低能源消耗。经过实践证明,这种控制参数的节能降耗技术可以有效节能35%
左右。
2)预处理单元节能降耗技术应用途径。在预处理单元处理污水过程中,对能源的消耗同样表现在处理设备的电能消耗上,其中进水泵的电能消耗占整个预处理单元耗电量的95%,这是一个相当巨大的数字,因此,污水处理厂需要合理选择进水泵,提高进水泵的工作效率。目前,应用效果较好的是改良型A2/O工艺。它是将污水从选择池进入厌氧池进行厌氧细菌的处理,再到缺氧池与好氧池,经过内回流过程,将产生的污泥回流到沉淀池进行分解与过滤,产生剩余污泥与出水。经过改良型A2/O工艺处理的污水,剩余污泥产生量较少,而且所消耗的能源是0.15 kW・h左右,提高了污水处理的效率,达到节能降耗的目标。
3)其他节能降耗技术应用途径。对于其他单元的节能降耗技术应用,主要是对处理污水工艺的设计与改进上。可以根据不同的情况,采用氧化沟工艺或者厌氧氨氧化工艺来降低处理含氮物质的能源消耗,它在短程除氮反应中可以节省近60%的能源;国家相关部门可以出台一些强化污泥处理政策,以降低剩余污泥量;另外,还可以建立沼气池,利用污泥产生的沼气发电、燃烧发热等产生能源,这样既解决了产生废气的问题,又缓解能源紧张局面。
综上所述,城市污水处理厂在发展过程中,节能降耗技术的应用也在不断地发展,对污水处理的效率也得到大大提高。相信,随着技术人员对污水处理厂处理技术的不断研究,工作人员对节能降耗技术的应用也将越来越纯熟,污水处理厂将充分发挥其巨大的节能潜力,缓解社会的能源紧张局面。同时,在污水处理厂运行过程中,应用节能降耗技术,还可以提高污水处理厂的经济效益,为企业的发展起到积极的促进作用。
参考文献
[1]刘礼祥,张金松,施汉昌,何苗.城市污水处理厂全流程节能降耗优化运行策略[J].中国给水排水,2009,16.
[2]张承辉,王冠平,黄年龙.递减式曝气在惠州金山污水处理厂中的应用及探讨[J].给水排水,2011,03.
目前DDS技术已经成为市场上主流信号发生器普遍使用的技术,然而在实现多机同步输出的问题上,由于多台信号源没有同步的信号基准,因此在相位和延迟时间上无法实现精确可调,且由于环境影响及频率较准字的细微差别,导致任意两台DDs信号发生器无法实现完全同步输出,这样便会导致整个测试测量过程烦琐复杂。RIGOL推出的DG系列函数/任意波形发生器,通过其强大的BURST外触发功能,有效的解决了这一难题。
功能原理简介
RIGOL推出的DG系列函数/任意波形发生器具有突发脉冲串(BURST)的功能,可根据需求编辑脉冲串的形式、个数及其各种波形参数,也可对延迟时间、相位等进行精确调整;也可使用内部、外部、门控及手动的触发方式实现对脉冲串的触发。
另外,外触发接口是智能仪器的重要接口,它可接收外部信号激励来触发仪器完成定制的工作,大大提高了仪器在测控系统中的一体化操控能力。同时,巧妙的运用外触发功能可有效的实现多机之间的同步协同操作。
实现方法
如图1所示,使用BNC线将DG(A)的SYNC输出接口与DG(B)的ExtTrig相连,DG(A)选择“同步开”,DG(B)使用BURST功能,触发源选择外部,之后通过调整BURST的脉冲串循环数、相位、延迟时间等即可实现两路信号的同步输出。
实际应用举例
1 可控延迟时间脉冲
如图2所示,在光至发光系统的测试中,激光头在接收到外部控制信号后发出激光束打在荧光物质上,荧光物质收到激发将产生特定光谱,此时会使用光谱仪及探测器来检测受激荧光物质发出的光谱。此时需要两路延迟时间严格可调的脉冲信号来分别控制激光头和光谱探测设备,以准确捕获荧光光谱。
对于如图3所示的需要两路严格调整脉冲延迟时间的信号,就必须使用DG系列函数任意波形发生器BURST的外触发功能将两信号严格同步,之后通过调整BURST延迟时间,即可实现精确的可调时间输出。
2 可调相位李莎育图形
李莎育图形法是示波器提供的一种测量两路信号相位差的有效方法,也是各高校物理、电工电子实验中的重要演示实验。然而在以往的教学实验中由于两路信号不能够完全同步,在演示实验中只能看到不断转动的李莎育图,不能固定调整信号的相位差。采用RIGOL DG系列函数/任意波形发生器的BURST外触发功能,即可简单的解决这一难题。图5给出了调节相位的界面截图。从图6中可看到很好的精确相位。
3 同步谐波
0城市污水处理厂的发展
自从改革开放以来,我国的城市化的脚步不断加快,城市的人口也随之逐年的增加,工业也不断加入进来,生活的污水的排放量自然是成倍的增长。近年来,为了及时完善的处理好城市的污水,减轻水环境的压力,我国在城市污水处理厂方面取得了迅速发展。据统计,截至10年底,全国已建成2157座污水处理厂,在建污水处理厂有1949座。当然在保证城市污水处理“量”的过程中,城市污水处理的“质”也随之面临着不断地新的挑战。随着城市人口的集中及工农业的发展,水体的富营养化问题日益严重,人们对污水处理提出了更高的要求。怎样才能够更经济更有效地从污水中去除造成水体富营养化的两种主要元素氮和磷,成为污水处理研究的热点。许多污水处理厂为了满足新的排放标准,将面临着现有处理工艺的改造、运行方式的改变和出水水质的改善等问题。
近些年来,由于经济基础的不断地进步,科学技术也在不断地进步当中,现如今AnaerObic-AnOxic-Oxic (AAO)工艺已是我国城市污水处理工艺中最为常见的一种污水脱氮除磷工艺,其处理出水的达标排放和运行过程的节能降耗对于保护我国地表水环境具有重要的意义。由于受到进水负荷波动等因素的影响,AAO工艺通常较难保持稳定高效的污染物去除能力。目前已建的污水处理厂一般都是通过稳态设计方法确定构筑物尺寸和运行参数,设计中使用较大的安全系数来克服进水的动态变化,保证系统运行过程的安全。这一方面增加了处理系统的建造成本,另一方面也使得处理工艺绝大部分时间内运行在非满负荷条件下,导致系统的运行能耗的升高。
一、城市污水处理系统的控制
二、 AAO工艺运行中的问题
AAO工艺的目标就是达到脱氮除磷的效果,即在保证COD和SS 去除效果的前提下脱氮除磷,脱氮和除磷相比,脱氮优先,其次是除磷,因为脱氮很难用化学方法完成,而除磷比较容易用化学方法实现,当碳源不足时,一般可以用加药的方法除磷。目前国内运行的污水处理厂普遍存在入水负荷变化较大的问题,最高瞬时进水量和最低瞬时进水量相差2-4 倍,运行中瞬时负荷变化比较剧烈。
针对入水的大幅度动态变化,一般均会采用较大的安全设计系数,所以国内的A2/O工艺的设计条件一般是够用的,而运行过程中的主要问题是当高负荷时能够达到满足反应器运行效果良好的溶解氧条件,而在低负荷时就会使好氧反应器内的溶解氧过高,同一区域的高溶解氧浓度可以达到7-8mg/L,低溶解氧浓度只有0.2-0.3mg/L,同时同一反应器内部的分布也很不均匀,并且可以通过回流而影响到厌氧和缺氧区的溶解氧浓度,厌氧段达不到厌氧状态,缺氧段有的也达不到缺氧状态,破坏反应条件,导致工艺脱氮除磷效果不好。
三、 AAO工艺的控制策略
AAO 工艺过程中,生物除磷脱氮工艺处理污水效果与DO、内回流比r、外回流比R、泥龄SRT、污水温度及PH 值等有关,其中回流和好氧段曝气能耗是污水厂耗能主要的组成,在保证出水水质的条件下,针对入水水量和水质的动态变化,综合考虑工艺构型特点、各处理单元性能、硬件设备功效,优化工艺运行过程,提高工艺运行的精确性,使反应池内生态环境达到最优状态,通过精确的曝气和回流,降低需氧量并减少回流,在出水达标的情况下,提高运行效率,以达到节能减耗的目的。
AAO 工艺主要的可控制变量有排泥量、外回流比、内回流比、曝气量及分配方式。其中,排泥量常用于调整活性污泥系统的污泥龄,或维持一定的反应区污泥浓度,需要调整的频率比较低,且排泥量也受到实际污水处理厂污泥处置能力的限制,所以在前馈控制策略中不作考虑。而外回流、内回流以及曝气却直接和以小时为单位快速变化着的进水负荷相互作用,共同决定了活性污泥系统的动态处理效果,因此它们的设定值需要跟随进水负荷动态调整。
对于AAO 工艺中的三个主要控制变量:外回流量、内回流比以及溶解氧设定值,都可以根据进水负荷进行控制。考虑到在生产实际中氨氮浓度易于测量,且对于同一污水处理厂进水氨氮占总氮的比例较为稳定,可以用进水的氨氮负荷来表征总氮负荷。因此,在前馈控制中,使用进水COD负荷、氨氮负荷及COD 与氨氮浓度的比值(C/N)作为监测自变量,根据其不同的数值水平调节A2/O 工艺的各项运行参数。
四、控制策略的应用