首页 公文范文 工业节能方法

工业节能方法汇编(三篇)

发布时间:2023-10-07 15:41:07

绪论:一篇引人入胜的工业节能方法,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

工业节能方法

篇1

电力资源不足是我国现在面临的一个重要能源问题,对于厂区而言作为我国的用电大户,如果厂区能做好节约用电工作就会就能让我国的用电紧张问题得到很大的缓解,所以在厂房设计中做好电力的节约措施,不仅能让自身减少生产成本,提高经济效益,也能为我国电力事业做出一定的贡献。

1 工业厂房节能设计意义

我国的电力属于一个阶梯式电价,用电量越大,收费越高。所以对于厂区自身来说,减少用电量就能节约工作的成本,提高更大的经济效益,但是从理论上分析,厂区对主要用电设备是生产设备,生产设备是的经济价值是远远大于节电的意义,厂区的节电等的设计中一般都是在一些附属设备上,主要在照明、通风、空调以及其他设备上。这些设备有时候加起来还没有一台设备的用电量高,但是因为很多厂区的用电设备是24小时运转的,所以加起来也是一个非常巨大的数字,同时在设备上,有些用电设备的改进空间很大,如国能降低能源消耗的20%,那么厂区的经济效益可以提升10%左右,其意义非常重要。

2 厂区节能的主要设计内容

2.1 照明系统的设计

在厂区节能改造中,照明节能改造是速度最快的改造之一,同时效果也最好。现在的照明技术发展迅速,节能灯、LED灯等技术能够实现电能转换光能的高转换率,一盏LED灯的光源很好,而用电量是仅为普通灯泡的20%左右,同时光源为白光,照明效果好。

2.2 配电结构的设计

配电结构是用于电力配置工作的,配电共组的合理性直接影响到厂房用电的电量,在配电设计中,首先应该保证的就是设备的稳定,第二点是为施工人员的服务和保护的一些装置,比如除尘装置,通风装置,照明装置。第三则是设备的一些附属设备,不如降温设备、电子控制设备,厂房的监控等。配电是要由主次的顺序的,人员的安全保障装置是应该受到最重要的保护,尤其的厂区的除尘通风装置需要保障正常运行的,同时对于照明设备也是配电的重点之一。

2.3 电气设备节能设计

在厂房节能设备中,并不是所有的设备都是需要长时间的运转的,比如空调系统,排水系统等都是需要可以暂停工作一段时间的,所以在设计这些系统的时候可以做到自动化技术的应用,通过传感器的信号检测,实现自动化的的设备管理,让其自动的开启功能和关闭能够能够实现电力使用的合理化要求。

2.4 能源利用设计

有的时候与节约能源更好的方式不如创造能源,在厂房的中,设备中有很多其他形式的能量是可以被利用的,而厂区外的一些自然环境的能量也是可以被使用的,比如使用风能发电,水能发电,同时也可以把一些能源回收再利用,比如可以在排风的口出增加涡轮机然后实现能量的部分回收,虽然永动机是不可能实现的但是能源的回收是可以做到的。在设计中要发散思维,让能源得到重复的利用,提高能源的使用率。

3 基于节能角度下的工业厂房电气设计要点

3.1 配电节能的设计

配电的系统一个的设计之间影响了厂区的用电设备的用电水平,从总体来看设备用电几乎占到了总体用电的一半以上,而照明用电则在15%至20%之间,所以在配电工作中,各项用电应该在一个合理的区间内,如果配电过度就会造成设备过载运行,浪费大量的电能,溶蚀影响用电器的使用寿命。但是设备的电量不足就会导致设备不能正常工作,所以配电工作要从综合方向考虑。优选高效节能型变压器,实现变压器的经济运行。工业厂房配电系统中,配电变压器是重要的电能转换和分配设备,但其自身又是一个能源消耗设备,不仅为配电系统提供电能,而且变压器自身也存在空载损耗和负载损耗,在配电变压器在实际运行过程中会吸收一部分能耗。因此,合理选择变压器的容量和型号是提高配电变压器电能转换率、降低运行能耗的重要措施。对于高效节能型变压器而言,其空载损耗和负载损耗也相对较小,变压器的经济运行是指变压器负载最大时,变压器的有功损耗降到最低,此时负载率成为经济负载率,变压器工作最为经济节能,效率最高。

3.2 照明系统节能设计

进行照明设计要充分考虑对自然光的合理利用。在满足建筑节能设计的同时,加大建筑外窗和单层厂房屋面安装采光板就很好地解决了这个问题。对于一些高大的工业厂房可以采用一般照明加局部照明的设计方案,既满足了建筑对一般照明的基本要求,又能照顾到局部加工作业队照明的需求。在工业厂房电气节能设计时,应优选高效节能的照明光源,如T5显色性能好的新式节能荧光灯和紧凑型荧光灯,并配装电子镇流器或节能型电感镇流器。近些年,LED照明技术发展迅速,其没有频闪、显色性高,同样亮度下LED耗能仅为普通白炽灯的1/10,荧光灯管的1/2。从已投产的工程案例来看,这种新型的照明设施已取得了良好的经济效益。常规电感镇流器其耗电量大约在灯具功率的20%以上,且其功率因数仅为0.4~0.5。新型节能型电子镇流器不仅其自身运行能耗较低,而且其功率因数高达0.9以上,大大降低了照明灯具线损,同时灯具在运行过程中无功损耗较小,配电系统供电质量得到有效提高。另外,照明控制系统优化设计也是工业厂房电气节能设计的研究重点,采取智能节能照明控制系统可以根据厂房实际用电需求,灵活控制照明灯具组合方案,按照时控、光控、自控、手控等多种组合方案,达到灯具的合理调节控制,达到降压限压幅度,节能效果十分明显。

3.3 电气设备节能设计

电机耗电大约占整个工业厂房耗电的90%以上,而且大多数电机其电能利用效率较低,存在很大的节能降耗潜力。对于200kW以下从经济角度应优选低压电机,对于355kW以上只有高压电机;而对于200kW~355kW范围的电机应从技术、经济、运行能耗等多个角度进行综合评估,以选取合适的电机功率。另外,随着电力电子元器件价格不断降低以及变频调速控制技术日趋完善,应结合工业厂房电机拖动系统的实际情况采用变频调速、软启动等先进控制措施对电机拖动系统进行节能降耗技术升级改造,以达到节能降耗的目的。

4 总结

在工厂的节能问题上说,是一项双赢的工作,既能实现企业的利益效益,另一方面能帮助国家减少缺电现象,在电气设备的使用上,想要达到节约用电的效果就要在配电、设备、自动化上不断的发展,通过合理的配电和设备的合理使用,减少电力资源的浪费。同时发展新的技术,用自动化技术改善电气设备用电浪费的问题。

参考文献

[1]赵福彦.试析建筑电气设计中的问题及策略[J].建筑知识,2016(2).

篇2

【中图分类号】U676.3 【文献标识码】A 【文章编号】1009-9646(2008)08-0144-02

我国是一个能源消耗大国,同时又是一个能源相对匮乏的国家之一,因此从一个战略的高度大力提倡节能降耗是一个利国利民、造福后代的伟大工程,节能降耗也是缓解中国资源约束的根本出路。由于锅炉司炉人员的工作环境条件较差、劳动强度较大,文化水平较高的专业技术人员一般不愿意从事这份工作,因此我市辖区工业锅炉大部分司炉人员的专业文化水平较低,以初中文化的人员偏多,造成锅炉给水化学水处理工作严重滞后,导致锅炉结生水垢十分严重,使锅炉的燃料损耗大幅增加,而我市造成锅炉燃料损耗增加的主要原因也是由于水垢的影响。在现今我国能源十分紧张的情况下,解决这种不合时宜的严重耗能的做法已迫在眉睫。

1 工业锅炉的水质要求

为确保低压工业锅炉(工作≤2.5Mpa的锅炉)的安全运行,工业锅炉的水质应当符合锅炉水处理监督管理规则及GB1576-2001《低压锅炉水质》的要求,按照相关标准及有关规则的要求,蒸汽工业锅炉的给水应采用锅外水处理方法,而现在普遍采用的是锅外钠离子交换水处理方法,它的原理为:当含有易形成水垢(硫酸盐、碳酸盐、硅酸盐等)的Ca2+、\Mg2+离子的原水经过钠离子交换剂层时,水中的Ca2+、\Mg2+离子与交换剂中的Na+离子进行交换,使被处理给水中的硬度降低到符合国家标准的要求;钠离子交换又是一种可逆的化学反应过程,随着锅炉给水在离子交换器中软化过程的不断进行,交换剂中的钠离子逐渐被给水中的Ca2+、\Mg2+离子置换出来,出水硬度也逐渐升高,当交换剂中绝大部分钠离子被置换出来,出水硬度超过某一值后,已不符合水质标准要求,这时称之交换剂“失效”,此时需用含有大量钠离子的食盐水对交换剂进行还原(即再生),即用盐水中钠离子将交换剂吸附的Ca2+、\Mg2+离子置换出来,使交换剂重新获得可游离的钠离子,从而恢复其软化能力。在这个软化-失效-再生的过程中,掌握再生时机是一个十分关键的问题,因为若交换剂还没有失效而提前进行再生,则会大大增加食盐的使用量,导致运行成本增加;若交换剂已经失效而没能及时进行再生,则大量的硬水进入锅炉,会很快导致锅炉水垢的产生。

2 我市辖区工业锅炉及耗能现状分析

我市工业不是很发达,区域范围内主要以蒸发量10吨/小时以下的低压工业锅炉为主,虽然锅炉用户都能按照工业锅炉的水质要求,装设锅外软水处理设施,但从我们多年的检验结果来看,在每个定期检验周期内,绝大部分的低压工业锅炉结生水垢都相当严重,水垢普遍在2~5mm的范围,严重水垢的存在不单给锅炉的正常运行带来严重的安全隐患,如:经常发生锅炉爆管、锅筒材质过热鼓包等严重事故;同时也浪费了不可估量的能源。从下表1的对比情况可以明显看出,水垢的导热系数要比钢铁的导热系数小数十倍到数百倍;因此锅炉结有水垢时,使受热面的传热性能严重变差,燃料燃烧所放出的热量不能迅速地传递到锅水中,大量的热量被烟气带走,造成排烟温度升高,排烟热损失增加,锅炉的热效率降低,在这种情况下,为保持锅炉的额定参数以满足生产工艺需要,就必须更多投加燃料,提高炉膛和烟气温度,从而造成燃料的严重浪费。

据相关实验及资料介绍,锅炉受热面上如果结有1mm厚的水垢,则多浪费的燃料约5%左右,对于不同种类的水垢或不同参数锅炉,所浪费燃料的数量也不相同,有些情况可能比这个浪费比例还高。因此,我市辖区使用的工业锅炉,定期检验时水垢普遍在2~5mm范围,而且以碳酸盐水垢偏多,所造成的燃料浪费大约在10~25%左右,浪费燃料的数目相当惊人。对大部分效益好的个体企业,业主在追求经济效益,对这部分的浪费从来没有经过精打细算,只要司炉人员能确保锅炉正常投运、企业有产品产出就行,导致锅炉燃料的严重浪费而没有引起足够重视,这种现象不是一种个人行为,而是一个全社会共同关注的问题,应该引起我们作为特种设备检验机构的高度重视。

3 装设锅外软水处理设施还产生大量水垢的原因分析

因为锅炉给水全部经过软水处理设施而产生符合使用要求的软水,所以只要交换剂不失效,它就具有交换能力,交换出来的锅炉用水就能符合水质标准要求,因此,我市这么多工业锅炉产生那么严重的水垢,主要原因是交换剂随着交换水量达到一定量而失效时,没能及时发现、及时再生,而且前面已提到,我市大部分锅炉司炉人员文化程度不是很高,化学专业的理论知识掌握不多,造成在整个运行过程中锅炉软水(交换剂没有失效正常交换时软水处理设施出来的水)与硬水(交换剂失效失去交换能力时软水处理设施出来的水)交替进入锅内,而硬水进入锅内是导致产生水垢的主要原因,特别是给水是地下高硬度水时则更快、更容易产生水垢。在检验中我们发现,很多锅炉司炉人员都反映他们也是经常对交换剂进行再生处理,为什么还会有这么多的水垢产生?其实,他们没有找准再生的最佳时机,经常是交换剂失效时没能及时发现,导致延误时机,使硬水也在“不知不觉”中经常交替进入锅炉,从而使锅炉结生水垢。

4一种工业锅炉简单易行的节能降耗方法应运而生

虽然锅炉用户都能按照工业锅炉的水质要求,装设锅外软水处理设施,但这些设施有时形同虚设,不然的话只要所有锅炉给水都经过正常的软化处理,这样锅炉的水垢应该能控制在正常的合格范围内,确保锅炉的安全、经济运行。针对我市工业锅炉司炉人员的实际情况,笔者经过多年的现场检验工作探索出一种“傻瓜型”的简单、实用、可行的防垢节能降耗新方法:在软水处理设施的进水口侧加装一个日常使用的水表(价格在100元人民币以内),当交换剂刚更换或再生工作刚完成时,这时的交换剂具有正常的处理能力,记下此时水表的读数Q1((吨);然后交换剂开始工作,第一天至第三天每天要连续多次提取出水水样进行送检分析,对用水量较小的锅炉用户,可增长出水水样分析时间,当出水分析结果显示水质硬度不符合锅炉用水标准时,记下此时的水表读数Q2((吨),在这个给水软化周期内,刚更换或刚再生完成的交换剂实际软化处理的水量约为(Q2-Q1)((吨),这个数字很重要,只要此台锅炉的工况不发生很大的变化、锅炉的给水水源固定不变,则司炉人员只要记住,在每次软化剂再生工作完成后,当交换水量达到(Q2-Q1)((吨)时的略前的时间就应该进行下一次的交换剂再生工作了,这样就能确保交换剂都能在正常的处理能力下工作。况且很多小型企业都没有配备专门的水质分析人员,这种方法也为用户减少长期性的分析支出,降低成本。因此,专业文化水平不是很高的司炉人员,只要会读普通的水表,就能简单、易行地确定软化剂的再生时机,使锅炉用水能长期符合标准要求,从而防止或大大减少水垢的产生,节约能源,减少锅炉事故的发生。

另外,由于交换剂交换到一定时间时,少部分会由于各种原因破碎或被异物堵塞造成处理能力的部分下降,因此当交换剂每使用到半年左右的时间时,又要重新复检每次再生后的实际处理水量(即Q2-Q1值),从而对交换剂进行必要的处理水量修正,确保交换剂每时都处在正常的处理能力内。同时每天在锅内加入少量的纯碱水溶液,这样可以去除有时由于司炉人员工作疏忽而忘记及时再生导致少量硬水进入锅炉产生的少量水垢,这样双管齐下,就能确保锅炉水垢控制在合理的范围内,从而有效地节约了燃料。

5 应用实例

我市有一台型号为:SZW2-1.25-AI的工业锅炉,原来由于司炉人员没能掌握好每次的再生时间,锅外软水处理设施经常形同虚设,连续几年都由于严重结生水垢发生受热面管子爆破而被迫停炉维修及进行化学酸洗除垢,不单是浪费大量的燃料、增加维修成本,同时也给锅炉的正常运行带来严重的安全隐患。2004年经此用户要求,对本台锅炉采用以上防垢节能降耗新方法,并连续三年对此台锅炉使用这种方法后的实际效果进行跟踪检查、检验,每次检查时发现水垢都能控制在0.5mm以下,并且三年来没有发生由于水垢原因而进行过任何的化学酸洗除垢及受热面损坏维修,同时据司炉人员反映,采用这种方法后每天使用的燃料要比原来节省1/4左右,因此既保证锅炉安全运行,又为用户节省了大量的燃料及维修费用,取得了良好的经济效果。

因此,笔者以上提供的低压工业锅炉“傻瓜型”简单、实用、可行的防垢节能降耗新方法,对于素质普遍不高的司炉人员操作的工业锅炉,不失为一种值得推广的好方法,在如今国家大力倡导节能降耗的大氛围下更具有十分重要的现实意义。

参考文献

[1] 司炉读本.――中国劳动出版社.

篇3

中图分类号:F426 文献标识码:A 文章编号:1674-098X(2014)06(a)-0050-02

Energy consumption analysis and energy saving direction discussion of iron and steel industry process

WANG Zhiwei

(Intelligent Engineering Department of CISDI Chongqing Information Technology Co., Ltd., Hui Jin Road 11# in Chongqing New North Zone, 401122)

Abstract:According to the average procedure energy consumption and crude fuel structure of iron and steel industry,the crude fuel structure,energy consumption characteristic and energy saving technology of the processes including coking,sintering,iron making,steelmaking and rolling were analyzed.On this basis,the key points of the energy saving development of iron and steel industry were discussed.Then the development direction of the key aspects including the coke ratio of iron making process,gas utilization rate,secondary energy recovery and etc were investigated, which has a great practical significance to iron and steel industry.

Keywords:iron and steel industry energy consumption energy saving gas utilization rate recovery rate

自2000年以来,钢铁行业经过年平均18.5%的粗犷式发展,产能严重过剩,同时环境、能耗、污染等问题突出,严重制约了钢铁行业的发展。目前,钢铁行业已成为我国能源资源消耗和污染排放的重点行业[1],占全国工业总能耗的25%以上[2],节能降耗、提高原燃料利用率和附加值,已成为钢铁行业发展的重中之重。

针对上述情况,该文基于钢铁行业各工序平均能耗以及钢铁行业原燃料结构,对钢铁行业焦化、烧结、炼铁、炼钢、轧钢等工序的原燃料结构、能耗特点和节能技术进行了分析,在此基础上讨论了钢铁行业节能发展的重点,并针对炼铁工序焦比、煤气利用率、二次能源回收等重点环节的发展方向进行了探讨,对于钢铁行业的节能降耗有着较大的实际意义。

1 钢铁行业能耗分析

1.1 钢铁行业原燃料结构

我国钢铁行业以长流程为主,工序包括:烧结、焦化、炼铁(高炉)、炼钢(转炉)、轧钢(热轧、冷轧),主要的原燃料为:铁矿石、洗精煤、无烟煤、动力煤、电力、汽柴油和工业水。其中,洗精煤、无烟煤和动力煤占整体购入能源的90%以上,其能量利用率、余热余能回收率是钢铁行业降低能耗、提高产品附加值的关键。据统计[3]:冶金生产过程中消耗的有效能量仅占28.3%,而转化为余热余能的占71.7%,达到14.34GJ/t.steel,折合490kgce/t.steel。

1.2 钢铁行业工序能耗

钢铁行业吨钢及各工序行业平均能耗见表1。

从表1可知,铁前(烧结+焦化)和炼铁工序占吨钢能耗超过90%,同时也是原燃料消耗的主要工序,提高铁前和炼铁工序的原燃料利用率、余热、余能回收率是钢铁行业降低能耗的关键。

同时,从1.1可知,原燃料消耗的理论回收能量为490kgce/t.steel,实际回收能量仅为63.4kgce/t.steel,实际回收能量所占比例较小,主要原因包括:1) 钢铁厂副产的高、焦、转混合煤气未充分利用,主要用于煤气发电,发电效率较低(通常30%左右),导致能量利用率低,能耗损失严重;2) 由于低温发电技术尚未得到推广,大量的低温热源未得到回收,导致能耗损失较大;3) 能量回收系统和钢铁行业各工序的作业率、能质等匹配问题,导致能耗的损失。

2 钢铁行业节能发展方向探讨

从上述分析可知,钢铁行业节能降耗的关键在于提高原燃料利用率,以及加大对余热、余能的回收。目前,钢铁行业各工序主要的节能技术如下:

1)烧结工序:

烧结余热回收技术;烧结机厚料层烧结技术。

2)焦化工序:

干熄焦技术、干熄焦发电技术;焦化加热自动控制;焦煤调湿技术;焦煤成型煤技术。

3)炼铁工序:

高炉煤气干法除尘技术;高炉炉顶余压发电技术;热风炉富氧及余热回收技术;高炉富氧喷吹技术。

4)炼钢工序:

转炉煤气湿法回收技术;转炉煤气干法回收技术;蒸汽回收技术;蓄热式燃烧技术。

5)热轧工序:

连铸坯热送热装技术;蓄热燃烧技术;高效隔热材料;加热炉自动燃烧控制;加热炉汽化冷却技术;脉冲烧嘴技术。

6)冷轧工序:

耐火纤维应用;能耗精益化管理;蓄热式燃烧技术。

7)其它:

纯烧高炉煤气燃气轮机发电技术;转炉煤气合成技术。

上述方法主要针对化石能源产生的高温煤气余热、余压的回收,以及提高冶炼强度降低燃料比的富氧和喷吹技术,对于提高煤气利用率的研究较少。近年来,随着钢铁企业对余热、余压回收的重视,以及高炉富氧大喷煤的发展,上述技术进一步发展的空间不大,因此,拓展煤气利用方式,提高煤气利用率,是钢铁行业未来节能发展的重要方向。另一方面,我国钢铁行业以高炉-转炉长流程为主,铁前(烧结+焦化)和炼铁工序占吨钢能耗超过90%,焦化是必不可少的重要环节,因此,铁前和炼铁工序是钢铁行业节能应关注的重点所在。

基于上述情况,目前钢铁行业的节能技术发展方向主要集中在以下几个方面:

1)降低高炉焦比和燃料比

高炉炼铁工序占吨钢能耗近70%,降低高炉焦比和燃料比对节能的效果显而易见。目前主要的研究在提高富氧率、增加喷煤量、采用精矿进料以及高炉专家系统等,以提高冶炼强度、降低燃料比和焦比,全氧高炉、焦炉煤气返吹、高炉煤气脱碳等技术尚处于试验过程中,尚未实现工业化。

2)提高焦炉煤气利用率

焦化工序是钢铁流程的能源转化中心,焦化富产的焦炉煤气是钢铁企业中最好的优质燃气,同时也是折合能耗最高的燃气,约70kgce/t.steel,提高焦炉煤气的利用率对于钢铁行业的节能来说意义重大。焦炉煤气发电是最常用的利用方法,但存在转化效率低,能耗损失严重等缺点,利用焦炉煤气制海绵铁、制天然气、制H2等可以更好的提高焦炉煤气利用率[4],同时可以增加焦化工序的产品附加值,是当前以及未来焦炉煤气利用的发展方向。

3)提高二次能源回收

钢铁行业副产高温煤气、烟气的余热回收是钢铁行业节能降耗的重要方向。目前的研究主要集中在高温煤气、烟气的回收,中、低温煤气、烟气的余热回收尚未得到重视,同时对于回收得到的蒸汽存在大量的高质低用现象,如高压蒸汽经管网减压后送至低压蒸汽用户,等。因此,分阶段(高温、中温、低温)进行余热回收和利用,开发低品质余热余能的高效利用技术,是当前以及未来二次能源回收的发展方向。

3 结语

通过对钢铁行业各工序原燃料结构、能耗特点和节能技术的分析,得到如下结论:

1)铁前、炼铁是钢铁行业原燃料消耗的主要工序,提高铁前和炼铁工序的原燃料利用率、余热、余能回收率是钢铁行业降低能耗的关键。

2)钢铁行业的节能技术的发展方向应重点关注降低高炉焦比和燃料比、提高焦炉煤气利用率、中低温能源的回收和高效利用方式。

参考文献

[1] 国务院办公厅.工业和信息化部关于钢铁工业节能减排的指导意见[Z].2010

友情链接