首页 公文范文 统计学大数据分析

统计学大数据分析汇编(三篇)

发布时间:2023-09-24 15:39:05

绪论:一篇引人入胜的统计学大数据分析,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

篇1

近年来,移动互联网、大数据等信息技术发展日新月异,已经成为推动教育变革的重要力量。移动通信终端的普及为学生营造了泛在英语学习环境,大数据技术开启了个性化智能教育时代,翻转课堂、MOOC、微课等新型教学模式层出不穷,虽然它们不能取代传统教学模式,但英语教师必须与时俱进,重视信息技术对传统英语课堂的改造和提升,以全新的视角思考英语教学的变革方向。

一、研究理论概述

1.泛在学习理论

泛在学习是指任何人在任何时间和任何地点都可以通过泛在网络实现任何知识内容的学习。泛在网络和泛在计算技术为人类实现随时随地的泛在学习提供了技术保障,信息技术和教育技术的融合发展正深刻改变着知识的传播方式和学生的学习方式,不断重构着教育和学习的生态环境。一方面,移动通信终端的多元化发展解除了传统英语学习对地点的约束,翻转课堂、MOOC等新型教学模式使学生可以自由地选择学习时间、进度、内容和学习方式。另一方面,传统教学设备正在向数字教学设备变迁,教育领域信息基础设施建设有效地推动跨区域教学资源整合,海量的多媒体教学内容必须和学生的碎片化时间有效结合,教师需要针对不同学情的学生进行精准施策和差异化施策。

2.学习生态理论

学习生态是由学习群体及其所处的环境共同构成的生态系统。系统由信息技术、多媒体教学设施等支撑,通过以合作、交流、共享、互动为特征的教育实践,实现知识信息传递和有效学习,从而促进系统的不断优化。学生与学习环境、学生和学习群体之间密切联系、相互作用,通过知识的吸纳、内化、创新、外化、反馈等过程实现有效学习[1]。在泛在学习的背景下,学习生态研究的是教育信息、学习主体、教师、教育信息环境之间相互作用的生态系统,需要从教育信息化建设和应用的视角研究各个生态系统成员之间的相互作用规律,维护生态系统的平衡发展。

3.有效学习理论

有效学习是指学生在教师的指导下,针对学习内容采取适合自己的学习策略,积极主动地参与到学习过程中,高效率地完成知识建构,从而实现学习目标并优化自身知识结构的学习行为。有效学习是对学习内容、学习方法、学习过程、学习结果的价值追求[2],学生可以实现对知识的深层次理解和灵活应用。学习内容的优化在大数据背景下表现为对海量学习内容的筛选、清洗与转化[3],使之满足学生的学习需要。学习方法调整是建立在对学生学习情况进行多元评价的基础上,根据学生个人学习偏好、认知习惯、学习方式、情感态度因素、学习内容的变化而动态进行的。学习过程的积极参与是指学生能够积极主动地学习,充分和师生进行合作、交流,善于提出问题、分析问题和解决问题。学习评价是学生改变学习计划、优化学习方法的重要手段,对学生学习可以起到引导、激励、启示和教育作用。

二、当前英语泛在学习模式存在的主要问题

1.传统课堂教学和线上教学环节缺乏有效衔接

首先,魍晨翁媒萄Ш拖呱辖萄г诮萄Ы谧唷⒅识范围上没有有效衔接。例如,学生不知道如何在线上学习课堂上没有掌握的知识点,或者在线上环节重复学习课堂中已经掌握的知识点。其次,缺乏对课堂英语学习和个性化英语自主学习的融合创新设计。在传统课堂教学中,整齐划一的教学标准无法满足英语学习分层分级的差异化教学要求。不同学情的学生对学习时间、空间、内容、方式的需求不尽相同,教师在教学中没能和学生线上学习的大数据分析结果进行有效的融合对接,仅根据自身的教学经验和主观判断作为实施因材施教的依据,因此其决策缺乏精准性和稳定性。

2.泛在学习缺乏生态性系统设计,学生英语泛在学习的用户黏性不高

当前泛在学习过程特别是在线学习过程缺乏师生互动性、社交互动性、线上线下互动性。泛在学习仅停留在将文字、图像、视频等教学资料数字化、网络化、集成化和泛在化的阶段,这在某种程度上增加了学生英语学习的选择性和便利性,但缺乏针对不同学生的学习黏性设计,因此泛在学习效果并不理想。

3.英语泛在学习体系缺乏具有“参与感”和“现场感”的语言学习环境

建构主义理论认为,知识的获得是在学习环境的特定情境作用下,借助教师的帮助与学习伙伴的协作,通过意义的建构过程实现的。因此在英语泛在学习过程中,必须增强学生在特定情境下的沟通和交际活动的参与性[4]。例如,如果在英语课程设计和在线学习设计环节,鼓励学生广泛参与学习内容、学习方法、学习偏好的设计,就会让学生感受到教师对学生的爱与尊重,从而增强学生学习的主动性和积极性,使不同学情的学生都能在学习过程中体验自我实现感,实现自主学习。另外,教师缺乏对学生多元需求的感知和把握,缺乏语言锻炼的“现场感”设计,使学生无法在接近真实生活情境的语言环境中得到语言交际锻炼。

三、基于大数据分析的英语泛在学习生态系统

移动通信和大数据分析技术的发展为有效解决当前英语泛在学习模式存在的问题提供新的方式和途径。基于大数据分析的英语泛在学习生态系统以学生的英语学习需求、特征、习惯、喜好等大数据挖掘为切入点,联合学校、互联网教育机构、教材编写人员、教师、信息化支撑机构、教育管理机构、在校学生和在职学员等生态系统成员共同把泛在学习落实到教学环境、模式设计、资源开发、评价机制和管理机制等工作中,不仅仅是教育内容资源和信息的共享空间,而且是实施素质教育和个性化学习的公共服务平台。因此,本文构建了基于大数据分析的英语泛在学习生态系统,主要包括大数据采集、大数据存储、大数据分析、大数据应用四个子系统,并构建了系统体系结构模型(图1)。

1.大数据采集子系统

首先,大数据采集子系统要实现数据、文字、图像、音频、视频、多媒体等结构化数据和非结构化数据采集,实现跨区域、跨机构、跨教学环节的数据互联互通和数据采集功能,解决教育数据资源配置效率不高的问题。其次,实现英语教学设计、教学实施、课程内容建设、网络学习内容资源建设、语料库建设、学生学习认知过程监控、学生学习情感态度监控和学习评价等全教学链条的数据采集功能,为生态系统成员之间的共生发展提供良好的数据资源基础。

英语教学设计数据主要采集教师按照教学大纲和教学目标要求对不同学生制定的学习内容、学习进度、学习路径等数据,厘清学生在课堂上和网络上分别学什么、在哪学、怎么学的问题。教学过程数据主要采集教师在教学中帮助学生解决英语学习问题的经验、做法和策略,包括情感态度、认知因素的调控、语言情境的构建、师生的有效互动等。课程内容数据主要是采集教师、学校、互联网教育机构课程教学内容数据,包括教材内容、课件、题库、案例等授课内容资料,以及以上资料经过碎片化处理的数据资料。

网络资源数据库主要采集互联网、校园网上英语学习方面的相关资料。英语语料库数据主要采集中国学习者英语语料库、美国当代英语语料库等语料库内容,以及英语教材、英美小说、散文、演说词、电影剧本、新闻稿等英文自然语料。学习行为数据库主要采集学生课堂学习行为和线上学习行为数据。课堂学习行为包括是否预习、复习等,线上学习行为数据采集学习日志、学习习惯、学习时长和学习路径等。学习评价数据主要采集教师或者在线学习系统对学生的学习能力、学习方法、学习策略运用、学习过程和学习结果的评价数据。学习情感态度数据主要是通过问卷、访谈等方式采集影响学生英语语言习得的动机、态度、焦虑、自信等指标。

2.大数据存储子系统

大数据存储子系统主要实现对大数据采集子系统采集的海量结构化、非结构化数据进行数据清理、归档、压缩,实现一体化数据存储。可以实现跨区域、跨系统的英语泛在学习数据的融合,解决不同教学机构、数据结构、操作系统带来的信息孤岛问题。英语学习数据仓库是指集成了大数据分析子系统和应用子系统决策分析所需的泛在学习数据,这些数据是按照一定的英语学习主题进行组织,是在对原有分散的各类英语泛在学习数据库数据进行加工、汇总和整理后得到的,有效地消除了各类源数据中的不一致性,所以英语学习数据仓库的信息均是关于学生英语泛在学习全局情况的一致性信息。数据仓库的这些全局性信息同r通过网络云平台实现英语泛在学习数据的云端存储,可以直接由大数据应用子系统调用。

3.大数据分析子系统

认知因素和情感因素是影响英语习得效果的两个重要方面。大数据分析子系统首先结合学生应该达到的学习目标对学生个体的英语学习认知行为和学习的情感态度进行数据挖掘,分析学生的动机、态度、焦虑、自信、兴趣等情感因素,以及学习毅力、能力、习惯、方法、英语水平和常犯错误等认知行为因素,对数据挖掘结果进行聚类运算和分类处理,根据学生的学习认知行为和学习态度情况将学生细分,以识别不同学生之间相似的泛在学习需求,以及某个学生个体在不同学习阶段泛在学习需求的差异性。同时,大数据分析子系统会对学生的学习过程和学习结果进行动态综合评价,并根据学习评价结果判断学习方案的优劣,有针对性地进行线上和线下学习方案的调整。

4.大数据应用子系统

大数据应用子系统包括学习信息推送系统、学习信息定制系统、在线互动学习系统、语言情境仿真系统、知识关联推荐系统、知识精准搜索系统、知识树形管理系统和娱乐在线学习系统等应用。学生可以通过学习终端连接到相关应用系统进行英语语言知识的有效学习。学习信息推荐系统自动推荐给学生的学习信息是学生应掌握而目前未掌握的英语知识。学习信息定制系统可以满足学生根据自身学习需求而定制某类主题的学习信息。学生一方面通过在线互动学习系统可以和辅导教师进行交流互动,解决学习中遇到的问题,另一方面可以通过社交软件实现和其他学习者的沟通和交流,共享英语学习经验。

语言情境仿真系统可以实现某类主题的英语学习情境的在线仿真,让学生在接近真实环境的英语语言情境中进行英语交际锻炼。知识关联推荐系统是根据学生所学知识点,自动关联推荐对应的拓展知识点。知识精准搜索系统可以帮助学生快速实现英语知识的精准有效搜索,从而进行有针对性的学习。知识树形管理系统可以实现学生已掌握知识和未掌握知识的树形目录管理,实现线上学习和课堂学习知识管理的无缝链接。

基于大数据分析的英语泛在学习生态系统有利于充分发挥信息技术对传统英语教育的改造提升作用,可以有效促进信息技术与教学过程、内容、方法和教学评价体系的深度融合。在生态系统的价值取向上注重以促进学生全面健康发展为中心,注重需求导向的个性化学生培养模式。在学生习得效果评价体系上注重加强学习过程评估,强调过程评估和结果评估相结合。系统注重充分挖掘学生的个体差异,充分挖掘学生的学习潜能,围绕学生英语学习习惯的形成和学习情感态度的培养,以现代信息技术为辅助手段,将英语语言知识进行碎片化、情境化、可视化处理,通过采取教育信息推送、关联推荐和定制化相结合的方式实现知识的在线传播,给学生提供个性化、定制化的英语学习信息服务,带给学生全新的英语泛在学习体验。

参考文献

[1] 张豪锋,卜彩丽.略论学习生态系统[J].中国远程教育,2007(4).

[2] 曹贞.以有效学习为目标的大学课堂教学[J].教育与职业,2007(26).

篇2

一、引言

在现如今的社会,无论是干什么都离不开信息。小到穿衣吃饭,大到国防军事,每一样都需要信息才能完成。信息是一个名词,围绕着它有信息的产生、信息的处理加工、信息的传递、信息技术的发展等等的一系列环节。所以在现代社会信息就如同一个核心细胞,其他细胞的工作都是围绕它展开进行的。我们对信息一定要敏感而精准。

二、何为大数据时代

大数据最初是由麦肯锡公司所提出来的,它在物理、生物、化学、金融、通讯行业出现并存在已经有一段时日,但它真正为人们所熟知认识却是因为互联网行业的飞速发展。人们总是用它来表述现时代是一个信息爆炸、海量、共享的时代。现如今一个决策的出台不再是凭借昔日的经验和感觉,而是数据的收集、整理、处理、分析所得出的结论。这就表示了一个新的时代,也就是信息数据时代的到来,经济、商业、金融、贸易等多个领域,信息已经成为主宰。这就是大数据时代,也是信息的年代。

三、统计学专业基本概况

统计学,从名称来看貌似是一个新兴专业,其实不然,它是一门非常古老的学科。它最早始于希腊雅典的亚里士多德时代,距今已有两千多年的历史。统计学是通过对数据信息的搜索、整理、分析、描述,以达到窥测所测对象的本质的目的,它是预测对象未来性的一门综合性科学。运用到了大量的数学和其他学科的专业知识,它的使用范围几乎涵盖了社会科学和自然科学的各个领域。统计学家王见定的研究已经说明了数理统计学永远打不败社会统计学,所以在以后的发展道路上,将是社会统计学与数理统计学共存与互补共同前行的模式。

目前作为高校所开设的一门学科,统计学专业主要有一般统计、经济统计两类专业方向,它所培养的是具有良好的数学、经济学素养,熟练掌握统计学的基本理论和方法,熟练地运用计算机分析数据,在企业、事业单位、经济管理部门从事统计调查、统计信息管理、数量分析等开发、应用和管理工作,或在科研、教育部门从事研究和教学工作的专业型精英类人才。

四、如何很好发展大数据时代下的统计学专业

首先从上文的论述中我们可以得出以下结论:統计学的技术手段是,搜索、整理、分析、描述数据,它的目的是预测、推断检测对象的本质,它是一门综合性非常强的科学性学科。从它的使用广度上来看,它几乎覆盖了社会科学和自然科学的各个领域。所以统计学的“势力”非常大。

而统计学所依赖的基础则是数据,传统的统计学中数据的收集主要包括实验数据、调查数据以及各种途径收集到的第二次数据。但是在经过一段时期的实践后人们发现这种方法得到的数据经常会存在一定范围内的误差,这对样本的客观性是一个根本上的影响,同时样本选取结果产生影响,因此传统的数据收集方法很难适应统计学的飞速发展的需要。从这个层面上来说,大数据的出现是科学发展到一定阶段的必然结果。因此大数据的产生和统计学的发展有着密不可分的关系。从另一面来看大数据的出现也是统计学中的核心环节实现,也就是数据的采集实现了大幅度的跨越。大数据时代的到来意味着检测对象的任何数据都能应用到统计过程中,打破了数据采集处理的局限性,再加上精准、合理的统计处理方法,使得统计结果将更具有代表性和说服力。

同时大数据、统计学、云计算技术三者的强强联合,预计未来的统计学势必会发生革命性的变革。大数据将对未来产生深刻影响,目前可以预见的统计学未来发展的前景有以下两个关键的点:第一点是在数据中科学性将和数据本身形成联盟。数据科学独立门户成为一门专门的学科势不可挡,数据的重要性不言而喻。统计学也将乘浪前行迎来新的发展的奇迹。对于数据平台,也将实现跨领域共享,最终将数据的共享扩展到企业层面,成为未来产业的一员。第二点则是数据的管理处理的竞争力大大增强,数据管理成为企业竞争力中的核心竞争力,直接关乎财务表现。数据资产是一个企业的核心资产,这个理念会逐步深入人心。之后,企业对于数据管理便有了更加精准的定位,企业就会将数据管理作为企业核心竞争力,持续发展,战略性规划与运用数据资产。数据资产管理效率与主营业务收入增长率、销售收入增长率显著正相关。届时,统计学的相关知识将会有大作为,每一位统计学专业的学生的就业前景将是不可估量的。统计学的发展前景也是一片大好,大数据、云计算、统计学三者则是珠联璧合,我国乃至全世界的信息技术又会迎来新的浪潮,并且是一浪高过一浪,让我们拭目以待。

五、结束语

本文就大数据,统计学二者的定义、概念首先做了介绍。其次是对统计学和大数据包括云计算在内的联合后的优势,以及未来的发展前景做了合理的分析与预测。数据时代已经起航,我们每一个人万万不可落后,我们要追赶信息技术的时代潮流,乘风破浪,迎难而上。为我国信息技术的发展增砖添瓦,为实现自我的价值奋斗不息。

参考文献: 

[1] 薛艳.大数据时代统计学专业教学体系的改革[J].教育教学论坛,2015(4):110-111. 

[2] 周茂袁.大数据时代统计学专业教学改革的初步探索[J].教育教学论坛,2015(35):105-106. 

篇3

关键词 大学生 电子护具 传统护具 技术 对比

一、研究对象与方法

(一)研究对象

北京交通大学跆拳道高水平运动队,女子57KG级运动员2名,男子58KG级运动员2名

(二)研究方法

数理统计法、逻辑分析法

三、研究成果与分析

(一)女子57KG级运动员得分统计(2局2分钟)

(见表1、表2)北京交通大学女子57KG运动员在传统护具中,中位横踢共得8分,高位技术共得9分,说明在传统护具技术下,横踢是绝对的主要得分腿法。从女子运动员技术特点来看,下劈技术也会在比赛中占一定的得分比重。在电子护具中,中位共产生4分,其中3分来源于推踢,总得分也远远低于传统护具中位得分的8分。从数据上来看,横踢技术的得分率下降很大。在高位技术上,横踢和下劈仍然是主要得分腿法,在电子护具中出现了拳的得分。从两个表对比可以看出,电子护具的总得分明显降低,这也意味着观赏性的降低。并且在中位腿法中的得分率降低,是其主要的因素。根据女子运动员技术特点来看,高位技术突出的运动员更能在电子护具中赢得优势。

(二)男子58KG级运动员得分统计(2局2分钟)

(见表3、表4)北京交通大学男子58KG运动员在传统护具中,中位横踢共得到9分,高位得到6分,转身技术得到3分。与女子运动员结论一样,横踢仍然是主要得分腿法。从男子运动员技术特点来看,除了横踢,转身技术也占了得分的一定比例。在电子护具中,中位腿法共得到4分,其中3分为推踢,数据与女子运动员偶然一致。说明横踢技术在男子运动员中,得分几率也明显下降。但原本在传统护具中输掉比赛的运动员,在电子护具的比赛中,赢得了比赛。同样说明,高位技术突出的运动员可以在电子护具中赢得优势。

三、结论与建议

在跆拳道比赛中,男女共16个级别,笔者认为,每个级别的速度、力量都不同,这也造成了技战术的使用的不同,所以本文只针对女子57KG和男子58KG作为研究对象。在传统护具与电子护具的数据采集上,两次实战中间间隔了一周时间,只希望4名运动员都能够以最好的状态来完成比赛。本文只针对DacDO(大道)牌电子护具做研究,只讨论得分数据,不对其工作原理做分析。

(一)结论

1.所有跆拳道运动员中,横踢是传统护具主要的中位得分腿法,推踢是电子护具主要的中位得分腿法。原因笔者认为横踢简单、快速击打效果好的优点可以在传统护具中得到充分的发挥。而在电子护具中,双方运动员要求更高的击打准确性,而不要求击打效果,所以横踢的使用率相比电子护具就有了明显的下降。推踢的技术相对于横踢而言,上半身运动幅度小所以会节省体力,并且在进攻中会减小自己的动作破绽,还可以在中近距离完成高位的变线,所以在电子护具中推踢代替了横踢,成了主要的中位得分腿法,并且对运动员电子护具中的战术起到了框架支撑的作用。

2.所有跆拳道运动员中,高位技术突出的运动员,都会在比赛中获得更多的胜利机会。原因笔者认为,在传统护具,此优势并没有显示出很大,因为传统护具是一个突出击打效果的比赛模式,所有中位的连续技术会很多,尤其是男子运动员。相比较电子护具中,要求的中位击打的准确度,中位得分的难度明显加大,所有运动员会把得分注意力转向高位,此时高位技术更加优秀的运动员便有了明显优势,这也是当今跆拳道运动员在选材时更加注重身高条件的原因。

3.目前很大一部分跆拳道人认为,电子护具降低了对抗性,影响了跆拳道的发展。因为没有了华丽的组合技术,快速的攻防转换,使跆拳道的观赏性大大降低。可也有一部分人认为,在电子护具的基础上,双方起腿的数量整体提高了,并且击头的比例高了,实际上是提高了对抗性。笔者认为两种说法都有各自的部分正确性,当今的跆拳道比赛,对抗性是在提高的,因为比赛的起腿数量在提高,高位的得分率在提高,这是不争的事实,之所谓造成观赏性下降的原因,是在当今规则下得分技术上的问题。推踢主导比赛,必然会造成观赏性下降的结果,加之对于头部的得分并不要求力度,只是擦过性击打就产生分值,种种原因才是问题所在。但笔者认为,跆拳道项目仍然处于一个发展阶段,目前是走向成熟的毕竟之路,会有一天随着科技和规则的发展,跆拳道会回到一个观赏性与公平性共存的时代。

(二)建议

1.规则不应经常更改,这样不利于一个项目的良好发展。

2.可以把高难度动作的分值加大,比如转身技术击头可以给5分,这样更可以鼓励高难度动作的出现。

基金项目:中央高校基本科研业务费专项资金资助”(supported by“the Fundamental Research Funds for the Central Universities”)项目编号:KOJB14015536

参考文献:

[1] 高志红,冯巨涛,任文岗,秦志明.新规则和电子护具的使用对跆拳道技术应用的变化与影响[N].中国体育科技.2010.7.10.

[2] 刘卫军.跆拳道[M].北京:北京大学出版社.2006:5-7.

友情链接