首页 公文范文 高中数学思想如何培养

高中数学思想如何培养汇编(三篇)

发布时间:2023-10-07 15:42:29

绪论:一篇引人入胜的高中数学思想如何培养,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

高中数学思想如何培养

篇1

一、类比思想及其与高中数学学习方法的关系

类比思想是一种基本逻辑思维,它是将属性上接近或相似的事物进行比较分析并从中总结出类似事物方法和规律的一种思维方式,类比思想在科学研究中得到了广泛的应用并且取得了丰硕的成果。同时,类比思想也是一种高中数学学习方法的重要指导思想,学生采用类比思想能够将复杂问题简单化、陌生问题熟悉化,以及抽象问题形象化。具体说来,就是针对高中数学的章节、知识点和题型进行对比,将问题落实在具体章节知识点和具体的解题案例中,从而找出其共性并融会贯通,以通常普遍的解题规律去应对新题型新问题。

二、基于实证分析的类比思想在高中数学学习方法中的作用分析

根据对类比思想基本内涵及其与高中数学学习方法之间关系的分析,在对大量利用类比思想进行高中数学学习的成功个案分析的基础上,本文认为类比思想在高中数学学习中的作用及其实证案例如下面三个方面所展示。

第一,类比思想可以帮助学生对于数学知识的学习和掌握由浅入深、有具体到抽象地学习和掌握新知识。比如在高中立体几何的学习阶段中,对于点线面知识点的学习,可以让学生对于生活中的具体事物进行抽象以形成点线面的概念,例如对于平行公理和空间中直线之间的关系类型,以及从二维空间到三维空间的转移中会发生什么样的变化;在学习函数的性质时,让学生学会根据函数的图像来分析函数的各种属性如周期截距及增长趋势等,并且用函数的观点来理解方程、不等式,以及数列;在复数与实数的四则运算中了解复数运算与实数运算有什么不同和相同点,以及是复数的什么属性导致了这些算法上的区别。

第二,类比思想可以帮助学生将不同的表面上零散的知识点和模块贯穿起来形成一个有机统一整体,从而开阔解题思路和办法。在高中数学的学习中,经常会遇到函数是周期函数的证明问题,这部分题目一般以复合函数的表达形式出现,但通过具体分析可以看出其是由基本的周期函数经过四则运算的形式出现的,因此这类题目的任务就是要寻找其中隐含的基本周期函数,并找出这些基本周期函数经过四则运算后其基本属性的变化情况,进而做出是否是周期函数,以及周期是什么的求解和证明;另外,在求点的轨迹变化时也是运用类比思维的一种典型情景,点的运行轨迹题目是几个函数或方程的一个综合问题,利用基本的函数形式和方程进行类比可以快速准确地解决这类题目。

第三,类比思想可以帮助学生在高考中节约考试时间并提高解题效率和水平。以2006年全国高考题的一个对于直角三角形勾股定理的考查,其要求将此二维空间中的定理扩展到三维空间来研究三棱锥侧面面积与底面面积之间的关系,如果学生能够采用类比思想进行积极的思考,不难得出三维空间中三棱锥的底面面积的平方等于三棱锥三个侧面面积的平方和;另外对于集合元素之间的关系推理也是能够采取类比思想进行快速准确解题的典型题目之一,元素与几何之间的属于或不属于关系、集合与集合之间包含、包含于、相等之间的关系是现实中整体与部分关系的一个表现。

三、高中数学学习中培养学生类比思维的建议和对策

根据类比思想及其对于高中数学学习的作用和意义的阐述,在高中数学学习中如何运用类比思想进行思维和创造性解题案例分析和应用的基础上,本文认为应该从下面几个方面加强对于学生类比思维的培养和运用。

首先,将高中数学中关键知识点进行属性分解,从而形成类比思维的基本元素,将这些基本元素进行对比分析。这是进行类比思维的前提,只有找到类比思维所赖以进行的类比基本元素,接下来的步骤和方法才有基本载体。相关研究显示,该步骤对于类比思维培养的贡献率在54%以上;其次,针对关键知识点进行典型案例的选取并进行深度挖掘和分析,将典型例题中包括的思路涉及的知识点进行解剖,以知识点带动关键题目案例的选取,应用典型案例挖掘和分析关键知识点,是类比思维正确实施和推行的关键步骤。相关研究显示,其对于高中生类比思维培养的贡献率在22%左右;最后,经常用类比的思维和方法进行知识之间的连串和梳理,这是类比思维培养的一个日常行为,即它是类比思维在高中数学学习中的一个常态。相关研究显示,其对于高中生类比思维的培养贡献率在14%左右。

四、总结

本文分析和探讨了类比思想在高中数学学习中的应用问题,类比思想是一种有效的学习方法和手段,特别是在高中数学阶段的学习中,具体来说类比思想对于高中数学的学习贡献主要包括三个方面。在本文最后,围绕着高中数学学习中类比思维的培养和形成提出了建议和对策,主要从案例选取、类比点要素分解及知识点梳理三个方面进行考虑和着手。

参考文献:

[1]吉亚东.要正确使用高中数学教材[J].中国教育技术装备,2010.13.

[2]张丽伟.如何优化高中数学课堂提问[J].中国教育技术装备,2010.13.

[3]刘志勇.让新课标下的高中数学教学发挥更大的作用[J].中国教育技术装备,2010.13.

[4]赵宪庚.高中数学新型教学方法初探[J].魅力中国,2010.9.

篇2

随着“素质教育”的深入,对课堂教学提出的要求也愈加严格,如何在高中数学教学中实施素质教育,是数学教师面临的迫切需要解决的重要问题。本文主要结合自身教学经验,对高中数学教学中如何实施素质教育提出自己的看法。

教育改革的目的是培养高素质人才。高中数学是一门基础学科,在提高学生的素质、实施素质教育的过程中起着不可替代的作用。所以,高中数学教师在教育教学过程中,要有意识地渗透素质教育。

一、转变观念,树立数学教学素质观

“素质教育”与“应试教育”最大的区别就是人才观的不同,高中数学教学的目的,就是要培养学生的数学素养,提高学生的综合素质,使他们具有一定的创新和自主学习的能力,养成终生学习的习惯。因此教师必须要转变观念,构建学生的主体地位,通过科学性、启发性和艺术性的引导,使学生在数学教学过程中迸发出探索性、创造性、多维性的思维“火花”。借用学生对数学中重要概念的建立、公式定理的揭示进行探索的过程,结合教学内容,设计出利于学生参与的教学环节,在解题、讨论中提高学生的兴趣,进而培养学生的参与意识,养成自主学习,主动探究的习惯,最终教学生学会做人、学会办事、学会求知、学会创造,获得全面综合的发展,使学生的潜能在教师的引导下获得充分的发展,提高学生的素质。

二、利用教材,进行思想品德教育,提高学生数学素质

高中数学教学,知识点多,如果仅仅教给学生抽象的理论知识,让学生搞题海战术,学生只会掌握基础的理论知识,不知道从中获取精神的力量,必将导致教师在数学教学过程中只实现了教书而没有起到育人的作用。而思想品德教育在“素质教育”中应该放在首要位置,因此教师在教学过程中,要不断联系知识,采用各种形式与方法,逐步渗透思想品德教育。高中数学教师要充分借助数学教材和一些相关的资料,给学生讲解数学学科的发展史,介绍我国在数学领域取得的辉煌成果,并通过讲述著名科学家的故事来灌输爱国主义思想、刻苦钻研精神等,让学生了解数学家的感人事迹,激发学生自强不息的精神,树立学生的自信心,上进心。

三、注重学生心理素质的培养

高中数学教师在教学过程中要注重培养学生的坚忍不拔的意志,增强学生的心理素质,培养学生自信、乐观、积极进取的精神。教师在教学过程中,可以向学生介绍意志坚强、献身科学的数学家,也可以从学生身边的实际例子出发,让学生感受到数学在生活中的广泛应用,激发学生学习数学的热情。教师在教学过程中还要设置问题情境,引导学生主动去探索,让学生体会到探索的乐趣与成功的喜悦,培养学生的学习兴趣,在学习过程中让学生逐渐培养出乐观、积极、谨慎、创新、勇敢这些良好的心理素质。另外还要培养学生的自信心,让学生消除自卑,减少心理压力,积极主动地投入到学习中去。

四、注重实践,提高学生的数学应用能力

新课标对学生的数学应用能力提出了较高要求,也是数学素质的重要体现,是公民必备的素质之一。高中数学教师要根据教材特点,挖掘教材功能,从学生的生活实际方面引入新知识的教学,分析概括出数学概念。教材中有大量的例题,与生活实际有密切的联系,教师在教学中要充分利用这些例子,把实际问题转化为数学问题,提高学生概括实际问题形成数学问题的能力,提高学生的数学应用能力。比如对于一些金融、经济的数学问题,既可以让学生初步了解社会经济问题,还可以进一步加深学生运用数学思维解决实际应用问题的能力。

五、注重培养和发展学生的数学思想

学生数学素质的重要组成部分是数学思想,数学思想是对数学知识、方法、规律的本质认识。数学的应用价值、文化价值都蕴含在数学思想中,数学思想对培养学生的能力。提高学生的文化素养起着重要作用。数学思想是数学的灵魂,只有掌握了数学思想,才能在真正意义上掌握数学,数学思想是学生必备的基本素质,高中数学蕴含着比如待定系数法、函数与方程、转化与化归、分类讨论、数形结合等多种数学思想方法。教师在高中数学教学过程中,必须要让学生养成和具备自觉采用数学思想方法来解决问题的习惯和能力。

篇3

一、将数学思想应用于高中数学教学中的重要性

第一,运用数学思想进行高中教学有利于帮助学生建立唯物主义的世界观。数学与哲学看似风马牛不相及,但实际上,重大的数学思想一般是哲学思想在数量方面的反映。例如三角函数的思想将数学从孤立静止的研究变化为对运动关系的数、形研究,在对其进行学习的过程中,学生就能树立唯物的、辩证的世界观。

第二,运用数学思想进行高中数学教学有利于培养学生的创新精神。在数学学习的过程中,面临着许多困难,学生只有不断地思考,不断地失败,不断地挑战,才能解决难题获得最终的解答。学生的积极创新、不断探索的过程恰恰达到教育的最终目的。

第三,运用数学数学思想进行高中数学教学有利于培养学生的逻辑思维能力和审美观。数学相对于其他学科,在锻炼学生逻辑思维能力上具有独一无二的优势,例如在研究数列排列的规律时,在研究立体几何角与线、线与空间的关系时,都需要学生运用逻辑思维能力对数字和数字之间、空间与平面之间的联系进行思考。学生在学习、思考的过程中,逻辑分析水平也得到大幅度提升。与此同时,数学作为一门学科,不仅具备知识性,而且还具备艺术性。数学学科最大的美体现在其简洁、科学、理性的美学思想上,在学习数学的过程中,学生受其影响,潜移默化地使自身的审美观得以建立。

二、数学思想在高中数学教学中的可行建议

(一)将数学思想渗透到教学目标的制定中

教学目标制定方案正确与否、具体与否将影响教学质量和教学效果。因此,在进行教学目标的制定时将数学思想渗透到其中,数学思想应当与教学大纲相匹配,教师应该清晰透彻地了解课本中哪些内容可以运用数学思想,各种数学思想对学生提出怎样的要求,在运用数学思想进行教学后能达到怎样的成效。通过透彻挖掘课本的内涵,明确不同阶段学生学习的特点,将数学思想的教学应用于数学课堂的教学之中。例如:以数形结合的数学思想为例,初中的数学教学,为学生高中阶段的数学学习打下了一定基础,在高中阶段进行教学目标设定时,首先通过函数数列的学习让学生对数形结合这一思想有初步的概念,在学习解析几何时要求学生了解数与形相互转换规律,尝试着用这一思路进行解题,在后期立体几何的学习中,要求学生运用这一数学思路,拓展解题思维,达到应用发展的最终目标。

(二)将数学思想渗透到数学知识的教学中

数学知识的教学,主要包括概念如何形成、结论如何推导、问题如何发现、方法如何总结、规律怎样产生这一系列的过程。数学方法常常隐藏于数学知识的教学过程中,因此教师要把握机会对学生的思维进行训练。在对某些数学概念进行介绍时,按照书本上的定义一带而过,学生常常难以运用抽象思维,理解概念背后的深层含义。教师在进行概念教学时应该促进学生领会概念形成的原因,概念中包含的思想,才能真正提高学生的思维能力和数学水平。在数学定律的学习过程中,教师应该充分发挥引导者的作用,引导学生拓展思维进行推导。例如,类比思想是众多数学思想之一,它通过观察已知事物的相似点,去猜想其背后代表的规律。高中数学中许多的公式定律都是在类比思想的指导下推理得出的。

(三)将数学思想运用到重难点教育中

例如:已知三个方程,x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实数根,求实数a的取值范围。

分析:如果按照常规的解题模式,就需要分别判定三个判别式的具体情况,分六组每组三个进行讨论,不仅十分复杂,而且容易产生错误。面对这一难点,教师在教学时,要引导学生正确运用化归与转化的数学思想进行解题,从相反的方向来思考这一问题,x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0这三个方程之中至少有一个方程有实数根的反向思维即为;三个方程都没有实数根,那么可以轻而易举地将原有的六组判别式简化为唯一的一组,即:

16a2-4(-4a+3)

a-12-4a2

4a2+8a

由此,不难确定,当三个方程都没有实数根时,a的范围在-32

(四)将数学思想运用到总结复习中

每一堂课,每一个阶段的学习都是在为知识体系的建立打下基础,学生在每日的数学课堂上学到的知识较为零散,即使是学过的知识也很难在需要的时候正确使用,这主要还是由于知识系统建立不完善造成的,而通过在复习和小结课程时运用数学思想,就能够挖掘教材章节与章节之间,知识与知识之间的内在联系。复习和小结课是锻炼培养学生对数学思想进行概括和总结的最好时机。

例如,在对三角函数的运算公式进行总结时,教师可以将方程与函数思想、化归与转化思想融入与总结课堂中,通过归纳三角函数间的关系,

Sin(α-β)Sin(α+β)Sin2α

Cos(α-β)Cos(α+β)Cos2α

Tan(α-β)Tan(α+β)Tan2α

三、总结语:

当前的高中数学教学存在着重知识、轻思想的情况,本文针对这一情况,从帮助学生建立唯物主义的世界观、培养学生的创新精神和培养学生的逻辑思维能力和审美观这三个方面,阐述了将数学思想应用于高中数学中的重要性,并提出了可行性建议,以期达到提升高中数学教学水平,提高学生的数学能力的目的。

参考文献:

[1]林静.如何在高中数学课堂教学中渗透数学思想方法[J].时代教育,2013(02).

友情链接