发布时间:2023-10-07 17:37:01
绪论:一篇引人入胜的经济作物含义,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

1.问题的提出
土地是十分宝贵的自然资源,是人类赖以生存和发展的物质基础,土地资源的有限性已成为人类可持续发展的关注焦点。然而,我国由于加速工业化与城市化,土地利用强度的不断增加,人地矛盾日益突出,导致区域内的生态环境逐渐恶化,对土地的利用程度已经达到甚至超过区域土地的生态承载能力,因而区域土地生态安全的研究势在必行[1,2]。
对影响经济作物用地生态安全的自然、经济、社会因素进行选择、计算、评价、分析以寻找出经济作物用地存在的问题及对经济作物用地的整治保护进行研究,以期维持土地资源与人类的协调发展实现自然、经济和社会的可持续发展的目标具有重要意义。
土地生态安全起源于生态安全研究,它的研究对于我国这样一个人口众多的国家有着重要的意义。土地生态安全是指陆地表层由各种有机物和无机物构成的土地生态系统的结构不受破坏,同时土地生态系统为人类提供服务的质量和数量能够持续满足人类生存和发展的需要。土地生态安全包括两层含义:一是土地生态系统本身所处的安全状态是否保持良好,是否能够维持土地生态系统内部正常的新陈代谢;二是指土地生态系统对社会经济发展的保障能力,即土地生态系统的人类服务功能[3]。它的本质是满足人类的生存和发展目的,促进经济、社会和自然生态的协调统一性[4]。
土地生态系统是一切资源与环境的载体,然而随着经济的快速发展,恶化的土地生态已逐步危及国土生态安全,并已成为国家安全的一个重要方面。由于人口增长和经济的发展,某些区域内生物、生态环境和生态系统遭到了空前的冲击与破坏,某些破坏已经达到甚至超过了土地资源的生态承受力。而经济作物用地则属于土地系统的一个重要组成部分,经济作物用地生态安全从某个侧面反映了土地生态安全。经济作物用地生态的恶化也是土地生态恶化的体现。
2.经济作物用地生态安全评价模型的构建
2.1评价体系的建立原则
经济作物用地生态安全评价指标体系的建立应该充分体现土地生态安全的现状与水平。指标应用来衡量人类行为导致的自然环境状况、状态变化的程度,表明产生生态环境问题的原因,显示社会克服生态安全危机与保障生态安全的能力。基于上述考虑,指标体系的建立应该遵循以下原则[5,6]:①生态环境的安全性与可持续性原则;②经济可行性和社会可接受性原则;③评价的综合性原则;④因子和标准选择的敏感性原则。
2.2评价因子的选择
经济作物用地生态安全评价涉及自然、经济和社会等多方面,根据指标体系建立的原则,为保证指标体系选择的科学性和完整性,在进行经济作物用地生态安全评价时,先采用分析法将评价目标分解为多个子系统目标,在参考大量现有的各种土地评价指标的基础上,对其进行筛选,剔除了对评价结果无关紧要的指标;同时,通过定性分析对指标的完备性进行判断,从而在评价工作全局上做到科学性与完备性相结合。
通过参考其他地方评价时所用的指标,再结合金堂县当地的具体情况和现有数据,为了保证评价因子体系选择的科学性和完备性,本文从土地自然生态安全系统、土地经济生态安全系统和土地社会生态安全系统三个方面出发,建立了由18个指标构成的评价指标体系。该体系由目标层(A)、项目层(B)和指标层(C)组成(表1)。
2.3指标权重和基准值的确立
指标权重对生态安全评价至关重要,运用层次分析法(AHP)和特尔菲法(Delphi)确定指标权重时具有较大的主观性,因此本文采用信息熵计算各指标的权重,其原理是:某项指标的值变异程度越大,信息熵越小,该指标提供的信息量越大,相应权重越大;反之,权重越小[7]。根据各项指标的变异程度,可客观地计算出各项指标的权重,为多指标综合评价提供依据。
其数学模型如下:
①对评价指标进行综合标准化:
P=X/X(即计算i个乡镇第j项指标值的比重);
②计算第j项指标的熵值:
E=-KPInP,令k=-1/Inn,则0≤E≤1;
③计算j项指标的差异性系数:
G=1-E;
④计算第j项指标的权重:
W=G/G(式中,P为评价指标保准化后的所得值;X为评价指标的实际值;i=1,2,…,n;j=1,2,…,m)。
在确定评价各指标的基准值时,本文结合研究区实际情况和确定生态安全评价基准值的一些常用方法[8],采用国家平均值和部分国际标准值作为各指标基准值。
2.4安全指数的计算
本文计算各安全指标安全指数的数学模型为:设X为第i个指标的实际值,Y为第i个指标的基准值,当P(X)为第i个指标的安全指数,则:
①对于正趋向性指标:
当X≥Y时,P(X)=1;当X<Y时,P(X)=X/Y
②对于负趋向性指标:
当X>Y时,P(X)=Y/X;当X≤Y,P(X)=1
2.5安全值的计算
为了能够综合反映研究区经济作物用地生态安全总体现状,必须对经济作物用地生态安全评价指标体系的每一项指标进行综合计算和评价。本文采用综合指数法计算研究区的土地生态安全值其数学模型为:
单项指标安全值:I(X)=P(X)×W;
经济作物用地生态综合安全值:I=I(X)
式中P(X)为安全指数,W为指标权重,n为指标数,结合表2数据计算出各评价指标安全值。
3.经济作物用地生态安全等级的划分与评价
3.1生态安全等级划分
根据区域土地生态环境安全判别原则,经济作物用地生态安全评价基准体系[9]如下:
生态安全值<0.4时,等级为I,表征特征:恶劣,指标特征:经济作物用地生态系统服务功能严重退化;生态安全值在0.4-0.6前闭后开区间时,等级为II,表征特征:较差,指标特征:经济作物用地生态系统服务功能退化比较严重;生态安全值在0.6-0.7前闭后开区间时,等级为III,表征特征:一般,指标特征:经济作物用地生态系统服务功能已有退化;生态安全值在0.7-0.9前闭后开区间时,等级为IV,表征特征:良好,指标特征:经济作物用地生态系统服务功能较为完善;生态安全值≥0.9时,等级为V,表征特征:理想,指标特征:经济作物用地生态系统服务功能基本完善。(见表2)
3.2综合评价及分析
结合表1和表2可以得出经济作物用地生态安全综合评价值计算结果及评价等级(可用示意图表示)。从计算结果和示意图可以看出各地经济作物用地生态安全值存在明显差异,并由此找出存在的问题。
4.结论与讨论
本文以土地资源的可持续利用为最终目标,构建了经济作物用地生态安全评价指标体系。该指标体系既可以对单项目用地进行评价,又可以对区域内多项目进行评价。评价有关结论还可以对土地开发、利用、治理等提供理论依据和指导,并且该指标体系可以广泛应用于各地区。因此,建立经济作物用地生态安全评价指标体系具有一定的科学性和可操作性。但在实际运用该指标体系时,还要遵循因地制宜的原则,对某些指标进行相应的取舍。
参考文献:
[1]高向军,鞠正山.中国土地整理与生态环境保护.资源.产业,2005,7,(2):123.
[2]高桂芹,韩美.区域土地资源生态安全评价.水土保持研究,2005,12,(5):271-273.
[3]孙彦伟,卢荣安,姜广辉.区域土地持续利用规划的景观生态学思维[J].生态经,2005,11,(3):56-59.
[4]肖笃宁,赵羿,孙中伟等.沈阳西郊景观结构变化的研究[工].应用生态学报,1990,1,(1):75-84.
[5]杨京平.生态安全的系统分析[M].北京:化学工业出版舍,2002:280-290.
[6]尹希成.生态安全:一种新的安全观[N].科技日报,1999-03-02(4).
[7]郭晋平,张芸香.关帝山林区景观要素空间关联度与景观格局分析[J].林业科学,1999,35,(5):28-32.
关键词:灌溉系统 产权演变 种植结构调整 模型
一 研究背景
改革开放以来,农村生产关系的变革和的实行,使农业生产由集体经营转变为家庭经营,原来属于集体所有的许多小型水利工程的管理体制与农村分户经营的模式不相适应,水利工程破坏或老化现象严重,制约着农村经济的发展(陈雷和杨广欣,1998)。为满足农业生产的需要,农村小型水利灌溉设施产权改革于80年代兴起并不断发展,从初期的经营权逐渐深化到建设权、处置权甚至是所有权,农民自己投资并管理水利设施的现象逐步增加。
有研究指出,农户积极支持小型水利工程产权改革,是因为他们认为产权明晰后,水利工程覆盖面积扩大,各种用水服务加强,会带来农作物产量提高及经济价值较高作物种植面积的扩大,从而增加家庭收入;另外,用水损失减少、水土流失、盐碱化程度的降低,也可使播种面积保持稳定,减少损失(Darra和Raghuvanshi,1990)。另外,农民可根据水资源的情况来选择合适的农作物种植方式,而不必象以前一样必须按照政府的指示,这样也可以扩大经济价值较高的作物的种植面积(Patil和 Lele,1995)。因此,水利工程产权改革,可以合理开发利用与管理农业水资源,提高水资源利用效率和效益(王金霞等,2000),通过调整农业结构,改革耕作措施与种植制度,发展节水、高产、优质、高效农业(刘昌明和何希吾,1996)。
虽然有的研究已提到灌溉设施产权改革与农作物种植结构的调整有关系,但现有的研究多数是描述性的,很少有从实证的角度对灌溉设施产权演变对农作物种植结构调整的影响进行定量分析的。本文的目的是以地下水灌溉系统产权演变为例,探讨产权演变对农作物种植结构的影响。
二、研究资料和调查点概况
(一)样本点的选择
河北省的人均水资源量仅为全国平均水平的1/10,灌溉用水中有70%来源于地下水。本研究选取了河北省青龙、元氏和肥乡县三个县做为调查点,三个县的水资源短缺程度都比较严重并且都是主要粮食产区,每个县随机抽取10个村作为调查的样本村,选择了开始年(1983年左右)、1990年、1997年和1998年四个年份为调查时期,样本点产权类型比较全且在不同地区间有一定的区别,农作物种植结构有一定的差异。
表1列出了样本点的一些基本情况,从表1人均耕地、地下水位及有效灌溉面积数据可看到青龙、元氏和肥乡三个县情况差异比较大,但三个县各项指标四个年份间的变化趋势基本上是一致的,人均耕地面积在不断减少,而水资源短缺状况日益严重,灌溉用水中地下水比例越来越高,元氏和肥乡县在1998年甚至达到了100%。
本文的地下水灌溉系统指机井,一个机井及其附属设备为一套地下水灌溉系统(以下简称为机井)。这里把机井分为集体产权机井和非集体产权机井两种,由私人所有及农民合股所有的机井被统称为非集体产权机井。用非集体产权机井数量占机井总数的比例变化来反映机井产权演变的情况。表1表明机井产权的演变是由集体产权形式向非集体产权形式发展的。三个县非集体产权机井所占比例从到1998年都是逐渐增大的,但三个县非集体产权机井比例的变化幅度不同,青龙县变化幅度最大(从0增加到69%),肥乡县的比例变化达到了7倍多,元氏县也有2倍多。
表1.样本点基本情况
县名
年份
耕地面积
(千公顷)
有效灌溉面积占
耕地面积比例(%)
人均耕地面积(公顷/人)
灌溉用水中地下水比例(%)
非集体产权井所占比例(%)
青龙
83年*
1.05
13
0.07
71
90年
0.98
15
0.06
69
4
97-98年
0.93
42
0.06
94
69
元氏
83年*
2.02
94
0.11
93
28
90年
1.92
95
0.10
85
48
97-98年
1.81
95
0.08
100
63
肥乡
83年*
1.62
61
0.15
100
9
90年
1.53
69
0.13
99
54
97-98年
1.50
83
0.12
100
80
注:83年*代表开始年,97-98年的数据为97年和98年样本点数据的平均值。
数据来源:作者对青龙、元氏和肥乡县30个样本村的实地调查。
(二)机井产权与农作物种植结构的变化
从开始到1998年,三个县小麦玉米的播种面积比例都是增加的,杂粮、薯类等其他粮食作物播种面积的比例基本上呈下降趋势(表2)。从经济作物播种面积变化来看,棉花的播种面积比例从80年代初到90年代初是增加的,但到了97、98年急剧下降。在元氏和
表2. 按年份分组的农作物种植结构变化
县名
年份
总播种面积(千公顷)
粮食作物占
总播种面积比例(%)
经济作物占
总播种面积比例(%)
合计
小麦玉米
其他
合计
棉花
其他
青龙
83年*
1.10
99
38
61
1
1
90年
1.08
98
41
57
2
2
97-98年
1.13
95
55
40
5
5
元氏
83年*
3.47
87
84
3
13
7
6
90年
3.41
88
86
2
12
7
5
97-98年
3.37
93
91
2
7
3
4
肥乡
83年*
2.38
73
66
8
27
23
4
90年
2.39
78
72
6
22
19
3
97-98年
2.50
93
85
8
7
3
4
注:经济作物包括棉花、油料作物和蔬菜等。其它注释及数据来源详见表1。
肥乡县,棉花以外的其他经济作物的播种面积比例从开始年到90年是稳中趋降的,98年元氏县还是略有下降,而肥乡县则是迅速上升但幅度小于棉花面积比例的变化。在没有种植棉花的青龙县,经济作物在总播种面积中的比例从80年代初开始一直是增加的。另外,数据反映出尽管各地区农作物种植结构的调整变化趋势有相似之处,但地区间作物种植结构变化还是有些差异。那么,是什么因素导致种植结构在不同时期和地区间存在差异呢?
由表3数据可以看出,机井产权状况同农作物种植结构存在一些相关关系。非集体产权机井比例越大,经济作物播种面积比例越高,而粮食作物播种面积所占比例越小。农作物种植结构也同人均耕地紧密相关(表3)。粮食作物种植面积比例同人均耕地成负相关,而经济作物种植面积比例则与人均耕地成正相关,这可能与我国农民自给半自给的农业生产方式有关。
在粮食作物内部,随着非集体产权机井比例的增加,小麦和玉米的播种面积比例不断扩大,而杂粮、薯类等粮食作物所占比例不断下降(表3)。农民自己打井后,有些地方从种植一季比较抗旱的杂粮作物转为种植冬小麦—玉米需水较多的两季粮食作物或其他两熟作物,因此杂粮、薯类作物播种面积减少,小麦、玉米播种面积扩大。小麦、玉米是国家订购粮的主要品种,这两种作物产量比较高,经济效益比杂粮、薯类好,符合农民的利益。从另一角度来看,农民有能力自己投资打井,说明生活水平在不断提高,对食物要求也在不断提高,所以从小米、高粱、薯类等粗粮转向小麦等细粮。
表3. 按非集体产权和人均耕地面积分组的农作物播种结构情况
分组
分组指标均值
总播种面积
(千公顷)
粮食作物占
总播种面积比例(%)
经济作物占
总播种面积比例(%)
合计
小麦
玉米
其他
合计
棉花
其他
按非集体产权机井比例(%)
0-0.99
10.18
90
74
16
10
7
3
1-89.9
51
8.24
89
79
11
11
6
5
90-100
98
9.40
88
80
8
12
7
5
按人均耕地面积(公顷/人)
0.030-0.079
0.06
6.11
96
67
29
4
1
3
0.080-0.111
0.10
11.61
90
82
22
10
4
6
0.113-0.227
0.14
10.10
84
79
5
16
12
4
数据来源:见表1。
随着机井非集体产权形式的发展,经济作物内部种植结构也在发生着变化(表3)。棉花是调查点的30个村种植的最主要的经济作物。棉花相对于粮食作物需要投入更多的劳动力,劳动力机会成本的变化对其影响比较大,另外棉花的种植还要受国家棉花收购政策及病虫害的影响,因此表中数据显示产权的变化对棉花播种面积无明显影响关系,计量模型中我们将对影响棉花播种面积的因素做进一步分析。其他经济作物这里主要指油料作物、蔬菜等经济价值较高的作物。我们调查的样本点中果树栽种面积也不少,但大部分果园与耕地面积是分开计算的,所以在我们的分析中没有把果园与其他作物放在一起进行比较。表中数据显示,随着非集体产权机井比例的增加,除棉花外的经济作物的播种面积比例也是增加的,这与预期是一致的。
非集体产权机井比例的增加,表明农民对水利投资越来越多。农民不但意识到水是一种稀缺且十分珍贵的资源,也接受了地下水的利用要有一定的成本的观念,所以要合理、有效地利用水资源以提高自己的收益,而种植结构的变化就是农民对此作出的反应。从以上分析可以看出,随着地下水灌溉系统非集体产权形式的发展,农民相应地调整了种植结构,经济价值较高的农作物播种面积比例增加,而粮食作物的播种面积比例有所下降。但以上单因素分析只是非集体产权与农作物种植结构之间表面的相关关系,我们不能因此而简单地对其关系下结论,因为农作物生产还受国家政策、市场价格和劳动力机会成本等多方面因素的综合影响。所以,为了较准确地分析产权与其他因素对农业生产结构的影响,必须建立计量经济模型进行分析。
三、计量经济模型的选择
根据以上分析,可以建立如下计量经济模型对影响农作物生产结构的因素进行分析:
Aij t=F(Rjt 、Wj t、ln(Qjt) 、(PG/PI) jt-1 、(PC/PI) jt-1、Njt、Dk、Tt )
上式中i代表作物(分别为粮食作物、棉花和其他经济作物),j代表村,k代表地区(县),t代表时期,Aij t代表第j村在t年i种农作物占农作物总播种面积的比例。R代表非集体产权机井的比例(%),由于产权变量是内生变量,为了避免模型解释变量的内生性问题,模型估计时用两阶段最小二乘法把非集体产权作为内生变量来分析产权演变对农作物种植结构调整的影响(机井产权演变的影响因素模型见附表1)。Q代表人均粮食定购任务(公斤/人),是用来测定粮食收购政策对种植结构影响的变量。PG,PC和PI分别代表粮食市场价格、棉花收购价格和化肥价格指数。因为同一时期内,县内各村的价格基本相似,所以价格的差异主要体现在年份之间的差异。上式中资源及投入品价格用到的是影子价格,即反映资源稀缺程度的灌溉用地表水比例(W,%)和劳动力机会成本(非农收入比例N,%)。为了显示地区间和年份间的差异,采用了地区虚变量Dk和年份虚变量Tt。模型各变量的平均值见表4。
表4. 模型变量
被解释变量 平均值
解释变量 平均值
非集体产权
机井比例(R,%)
42
地下水位(米)
44
灌溉用水中地表水比例(W,%)
8
人均耕地(公顷/人)
0.1
人均收入(元/人)
782
粮食播种
面积比例(AG,%)
91
集体经济力量(元/人)
29
教育程度(%)
44
人均粮食定购任务(Q,公斤/人)
61
棉花播种
面积比例(AC,%)
5
上年粮食价格与化肥价格指数比(PG/PI) t-1
0.4
上年棉花价格与化肥价格指数比(PC/PI) t-1
2
非农收入比例 (N,%)
40
非棉花经济作物
播种面积比例(AO,%)
4
有政府财政扶持样本数
37
能得到水利贷款样本数
63
有道路通过本村的样本数
82
注:人均收入和集体经济力量按90年价格计算,地下水位是调查年份上一年的地下水位,教育文化程度指样本村具有初中以上文化程度的劳动力比例,有政府财政扶持样本数、能得到水利贷款样本数和有道路通过本村的样本数的数值为合计数,其它数值为变量平均值。总样本数为120个 。数据来源:见表1。
四、计量经济模型估计和结果
由于粮食定购任务在同一地区内差别不大,主要是体现在地区之间的差异,其变量同地区虚变量存在较强的共线相关。同时,价格变量在地区间差异很小,主要是年份间存在着差异,这同模型中的年份虚变量相关较大。为了解决这两个问题,选用了4种方案对模型进行估计。方案1(表5)和方案3(附表2)加入了年份虚变量而没有用农作物价格与化肥价格指数之比的变量,在地区虚变量(方案1加入了地区虚变量,方案3 则没有)的取舍上对模型进行比较。方案2(表5)和方案4(附表2)是分别对方案1和方案3用农作物价格与生产资料价格指数之比的变量代替年份虚变量对模型进行估计。四种方案的结果(表5、附表2)显示,影响农作物种植结构的解释变量的系数符号与理论预期相同,且产权变量、劳动力机会成本变量在四种方案中的结果变化不大,且基本达到了统计显著水平,说明模型比较稳定,下面采用方案2(表5)来对模型系数的估计结果进行讨论。转贴于
表5. 作物种植结构决定因素计量模型估计结果(方案1和方案2)
解释变量
粮食作物
棉花
其它经济作物
方案1
方案2
方案1
方案2
方案1
方案2
截距
82.530
99.377
7.448
-10.100
10.022
10.723
(25.19)***
(13.14)***
(2.39)**
(-1.41)
(5.69)***
(2.64)***
Pjt
-0.078
-0.082
0.033
0.039
0.045
0.043
(-3.42)***
(-3.63)***
(1.54)
(1.83)*
(3.63)***
(3.54)***
Ln(Qjt)
3.029
2.964
-0.730
-0.649
-2.299
-2.315
(4.07)***
(3.99)***
(-1.03)
(-0.92)
(-5.75)***
(-5.82)***
Wjt
0.031
0.028
-0.023
-0.019
-0.008
-0.009
(0.92)
(0.83)
(-0.72)
(-0.59)
(-0.44)
(-0.50)
(PG/PI) jt-1
2.604
-3.336
0.732
(0.15)
(-0.20)
(0.08)
(PC/PI) jt-1
-5.430
5.713
-0.283
(-2.90)***
(3.21)***
(-0.28)
Njt
0.108
0.095
-0.054
-0.037
-0.054
-0.058
(1.81)*
(1.65)*
(-0.96)
(-0.67)
(-1.69)
(-1.88)*
元氏县虚变量
-9.173
-9.141
4.241
4.204
4.932
4.937
(-3.86)***
(-3.82)***
(1.88)*
(1.85)*
(3.87)***
(3.85)***
肥乡县虚变量
-12.566
-12.825
10.247
10.596
2.319
2.229
(-4.51)***
(-4.62)***
(3.87)***
(4.02)***
(1.55)
(1.50)
1990年虚变量
0.412
-0.068
-0.344
(0.18)
(-0.03)
(-0.28)
1997年虚变量
6.921
-7.253
0.332
(2.23)**
(-2.46)**
(0.20)
1998年虚变量
7.251
-7.047
-0.204
(2.34)**
(-2.40)**
(-0.12)
调整后的R2
0.43
0.43
0.40
0.40
0.29
0.23
F值
10.86
12.26
9.66
10.83
5.41
6.06
注:“*”、“**”、“***”分别代表10%、5%和1%的统计显著水平。
(一)非集体产权机井的发展会促进农民调整种植结构
从模型系数估计的结果来看,非集体产权机井的发展对农业种植结构的影响与理论预期基本上是一致的。非集体产权机井比例变量在粮食作物及其他经济作物方程中的系数都达到了1%的显著水平,这意味着非集体产权机井的发展对传统的粮食作物与高经济价值的作物间结构的调整有着显著的影响。
粮食作物方程中,产权变量的系数为-0.082,说明非集体产权机井的比例增加10%(从样本平均值的42%增加到52%),粮食作物的播种面积比例就要减少0.82%(0.082×10=0.82),而相应地棉花和其他经济作物播种面积比例则分别增加0.39%和0.43%。
从分析中可看出,地下水灌溉系统非集体产权的发展对种植结构的调整起到重要的作用,特别是在增加经济价值比较高的作物上表现更加明显。农民在自己投资打井后,提高了水资源利用效率,使一部分水能够用来扩大经济作物的种植面积。另外,自己的井使用起来比较方便、及时,农民也敢种植对灌溉用水要求比较高的经济价值高的作物。
(二)粮食收购政策仍然是影响农作物生产结构的重要原因
人均粮食定购任务变量在粮食作物和其他经济作物方程中都达到了1%的统计水平,表明粮食定购任务对农民种植结构有显著的影响,主要体现为人均粮食定购任务的增加会导致粮食作物种植面积比例的扩大,而相应地棉花和其它经济作物的播种面积都有所减少。
从方案2(表5)与方案4(附表2)的结果比较来看,地区虚变量与人均粮食定购量变量之间有一定的相关关系,方案2中人均粮食定购量变量的系数大于方案4的变量系数,同方案2中地区虚变量的负值系数有关。
(三)价格信号是指导农民进行生产决策的重要因素
模型估计结果表明,粮食与化肥比价每上升1%(从样本平均值的0.4增加到0.404),粮食播种面积比例会增加1%(2.604×0.3=1.04),棉花的播种面积比例会减少1.3%(3.336×0.4=1.3),其他经济作物播种面积比例会增加0.3%(0.732×0.4=0.3)。而棉花与化肥比价比每增加1%(从样本平均值的2增加到2.02),粮食播种面积比例将减少10.86%(5.43×2=10.86)、棉花的播种面积比例将增加11.42%(5.713×2=11.42),其他经济作物播种面积比例会减少0.56%(0.28×2=0.56)。
(四) 劳动力机会成本影响作物种植结构的选择
随着经济的发展,农业劳动力的机会成本不断上升,外出就业的比例逐年增加,非农收入可看作是农民从事农业生产的机会成本。农民放弃部分农业生产时间外出就业会对种植结构产生一定的影响。结果显示非农收入比例在粮食播种面积和其他经济作物播种面积方程中均达到了10%的统计显著性水平。三个方程中非农收入的系数分别是0.095、-0.037和-0.058,说明非农收入每增加10%(从40%增加到50%),粮食作物的播种面积比例将增加0.95%,棉花和其他经济作物播种面积比例则分别减少0.37%和0.58%。
棉花和其他经济作物与粮食作物相比是劳动相对密集的农作物,为满足口粮的需要,在劳动力机会成本不断上升的情况下,农作物播种面积首先减少的是非粮食作物。
五 结论与政策含义
上述分析结果表明,地下水灌溉系统产权的演变促进了农作物种植结构的调整,扩大了经济价值较高的农作物的种植面积比例,使粮食作物种植面积比例有所下降。另外,粮食价格与生产资料价格比的升高、粮食订购任务的增加及劳动力机会成本的提高都会导致粮食播种面积比例的增加。对这些结论的主要政策含义讨论如下:
(一) 地下水灌溉系统产权演变和农业结构调整
农作物种植结构的调整是在地下水灌溉系统产权由集体产权形式逐渐向非集体产权形式发展的情况下,农民在对农业生产投入与产出收益比较后进行的合理的行为。同其他制度创新一样,这种产权制度演变对农业生产的影响意味着农民生产的优化行为意识和能力在不断增强。它对农业生产结构的调整、资源的有效合理利用和农民收入的增长会起促进作用,政府应通过制定相关政策加速和完善灌溉系统产权的演变。科技是第一生产力,制度创新也是非常重要的生产力。 (二)地下水灌溉系统产权演变与粮食发展政策
过去的研究指出地下水灌溉系统产权的演变会加强灌溉管理,维持灌溉系统的持续运行并提高水资源的利用效率。本研究结果表明地下水灌溉系统非集体产权形式的发展还会使粮食作物播种面积比例有所下降。因此在灌溉系统非集体产权形式成为产权演变发展趋势的情况下,如果政府农业政策的目标包括粮食生产的稳定增长,政府则要考虑用增加农业科研和推广投资、增加农业基础设施建设投资等政策来提高单位面积产量,以抵消由于灌溉系统产权演变给粮食生产面积减少带来的影响。 (三)农业生产结构的优化要有准确、合理的市场信号
随着市场经济的发展,农民在生产时虽然还受国家政策及口粮需求等条件的约束,但已经在按价格信号的引导调整农作物的种植结构。因此,在农业生产结构调整过程中,国家应该加强建立信息畅通、公正规范的市场环境,为农民的生产决策提供准确的市场价格信息。
(四)农业生产结构调整受粮食收购政策的制约
目前粮食收购政策制约着农业生产结构的进一步调整,也制约着水资源的有效利用。这也意味着在华北灌区,取消粮食收购任务,经济作物面积将显著增长,而粮食作物面积则显著下降。而市场化是经济发展的趋势,靠粮食收购政策来维持粮食总量供给不是长远之计,这进一步论证了科技在保证国家粮食安全的重要地位。 附表1:产权演变模型
影响产权演变因素
解释变量
系数
T检验值
截距
-177.785
(-1.61)
自然资源条件
W地表水源比例
0.428
(2.76)***
W地下水位
65.548
(3.01)***
人口压力
ln(LP人均耕地)
-84.815
(-2.33)**
政策因素
水利扶持政策
13.162
(1.92)*
水利贷款政策
-61.877
(-2.05)**
经济条件
ln(人均集体收入)
1.497
(0.78)
ln(农民人均收入)
-10.892
(-0.81)
文化程度
EDU文化程度
-0.035
(-0.046)
市场化程度
R道路
22.000
(2.13)**
村虚变量
略
年份虚变量
略
调整后的R2
0.75
F值
9.54
注:“*”、“**”、“***”分别代表10%、5%和1%的统计显著水平,在产权演变影响因素模型的几种不同方案中,选用的是调整后的R2比较高的方案,这样产权变量的拟合程度比较好。水利扶持政策、水利贷款政策及表示市场化程度的道路变量是虚变量,变量值为1分别表示样本点能得到水利扶持及贷款政策和有道路通过(模型的分析详见王金霞、黄季焜和Scott,2000)
附表2 作物种植结构决定因素计量模型估计结果(方案3和方案4)
解释变量
粮食作物
棉花
其他经济作物
方案3
方案4
方案3
方案4
方案3
方案4
截距
77.451
90.703
13.088
-1.357
9.461
10.654
(24.50)***
(11.54)***
(4.43)***
(-0.19)
(5.61)***
(2.56)**
Pjt
-0.078
-0.083
0.029
0.034
0.049
0.049
(-3.16)***
(-3.40)***
(1.24)
(1.50)
(3.74)***
(3.78)***
ln(Qjt)
1.396
1.275
0.008
0.125
-1.394
-1.400
(2.11)**
(1.98)*
(0.01)
(0.21)
(-3.98)***
(-4.10)***
Wjt
0.047
0.044
-0.039
-0.037
-0.008
-0.007
(1.30)
(1.20)
(-1.15)
(-1.07)
(-0.42)
(-0.39)
(PG/PI) jt-1
-3.925
13.371
-9.446
(-0.22)
(0.80)
(-1.00)
(PC/PI) jt-1
-3.678
3.035
0.643
(-2.00)**
(1.76)*
(0.66)
Njt
0.236
0.222
-0.191
-0.177
-0.045
-0.045
(4.56)***
(4.45)***
(-3.95)***
(-3.79)***
(-1.62)
(-1.72)*
元氏县虚变量
肥乡县虚变量
1990年虚变量
-1.259
2.156
-0.897
(-0.52)
(0.96)
(-0.70)
1997年虚变量
4.019
-3.333
-0.686
(1.28)
(-1.14)
(-0.41)
1998年虚变量
4.317
-3.143
-1.174
(1.38)
(-1.08)
(-0.70)
调整后的R2
0.33
0.33
0.32
0.32
0.11
0.12
F值
9.36
10.77
8.84
10.03
3.77
4.47
注:“*”、“**”、“***”分别代表10%、5%和1%的统计显著水平。
参考文献刘昌明和何希吾,《中国21世纪水问题方略》,科学出版社,1996
陈雷和杨广欣,“深化小型水利工程产权改革加快农村水利事业发展”,《中国农村水利水电》,1998年第6期,第1-4页
王金霞、黄季焜、Scott,“地下水灌溉系统产权制度的创新与理论解释”,《经济研究》,2000年第4期第66-74页
Darra, B.L.and C.S.Raghuvanshi,Irrigation Management,Atlantic P&D, 1990
R.K.Patil and S.N.Lele,"Irrigation Management Transfer:Problems in Implementation" in Irrigation Management Transfer,Food and Agricultural Organization,Rome, 1995
大康:你这是抠字眼。不过,“五谷”是什么,我还真不知道……
“五谷”这一说法,最早出现于春秋战国时期。当时,人们种植的谷物并不是只有五种,所以,关于“五谷”究竟是哪五种谷物,古书上有不止一种记载。其中,最常见的说法有两种,一是“稻、黍(shǔ)、稷(jì)、麦、菽(shū)”,一是“麻、黍、稷、麦、菽”。区别就在于,一个有稻无麻,一个有麻无稻。
稻和麦
咱们中国人的一日三餐,总少不了各式可口的主食与点心,如米饭、面条、馒头、水饺、年糕、糍粑……如果把这些令人眼花缭乱的美食打回原形,你会发现,占据我们大半张餐桌的,只是水稻和小麦这两个其貌不扬的家伙!
认一认
虽然每天享用着水稻和小麦的“成果”,但恐怕很多人都没见过它们的庐山真面目。看看这两张图,请你辨认一下:哪个是稻穗,哪个是麦穗?
大康:虽然我没有亲眼见过水稻和小麦,但是这题难不倒我。
阿牛:哦?说说你是怎么辨认的吧!
大康:不是有句话叫“针尖对麦芒”吗?可想而知,长着尖尖的芒刺的,就是小麦了。
阿牛:恭喜你,在“五谷”之中,你已经能分出“两谷”啦!
水稻和小麦在我国种植的历史都非常悠久。在3000多年前,我国最早的文字甲骨文中,就有对“稻”和“麦”的记载。
“来”的甲骨文字形,看起来就像一株禾苗。这个如今常用作动词的字,怎么会和小麦有关呢?
对此,东汉许慎的《说文解字》中有解释:人们相信小麦是“天所来也,故为行来之来”,也就是说,人们相信小麦是上天送来的礼物,因此小麦“来”便产生了“往来”的“来”这个含义。而据后人考证,小麦的“故乡”在亚洲西部,向东传入中国后,被广泛栽种。也许,我们的祖先就是想到了小麦长途跋涉来到这里,才会赋予“来”字“由彼至此”的含义吧!
不同于小麦“舶来品”的身份,水稻是我国土生土长的作物。在位于长江下游地区的河姆渡遗址中,曾出土过成堆的稻谷、稻秆,说明在7000多年前,生活在那里的居民就开始种植水稻了。这一发现,也证明了中国是水稻的原产地之一。
小麦适宜在干燥的土壤中生长,而水稻喜欢温暖潮湿的地方。我国的气候特点恰好是南方多雨,北方比较干燥,“南稻北麦”的种植格局就这样自然地形成了。
填一填
在我国,水稻和小麦的种植、收获时间也不同。下列两首诗各描写了一种谷物的收获情形,你能根据时间,填出正确的谷物吗?
田家少闲月,五月人倍忙。夜来南风起, 覆陇黄。――[唐]白居易
香 三秋末,平田百顷间。――[唐]杜甫
黍和稷
大康:这两种是什么?我不仅没吃过,连听都没听说过。
阿牛:先别说得这么绝对。小米粥你总吃过吧?
大康:这倒是吃过,可是小米和它们有什么关系呢?
黍,在今天又叫黍子、黄米,是一种略带黏性的谷物,可以用来酿酒和做糕点。
稷,一般认为是粟(还有一种说法是高粱),俗称小米,比黄米略小。
黍和稷,都是我国原产的作物。对于今天的人们来说,它们远没有稻和麦的名气大。然而在古代,尤其是先秦时期,黍和稷的地位可非同一般,不仅是人们最赖以生存的食粮,还是用来祭祀的祭品。其中,稷还有“五谷之长”的美誉。知道“五谷之神”叫什么吗?稷神!不是稻神,也不是麦神。人们把土地神“社”和五谷神“稷”合称“社稷”,用来作为国家、江山的象征,由此可见稷的地位有多重要。
在《诗经》中,黍和稷像一对好兄弟,总是形影不离地出现。其中最著名的篇目,当属《黍离》:
彼黍离离,
彼稷之苗。
行迈靡(mí)靡,
中心摇摇。
知我者谓我心忧,
不知我者谓我何求。
悠悠苍天,
此何人哉!
那黍已经一排排十分茂盛,
那稷也生出了禾苗。
我步履缓慢地前行,
心里满是苦闷烦恼。
了解我的人会说我心怀忧愁,
不了解我的人会问我在把什么寻求。
高高在上的苍天啊,
这一切都是谁造成的呢?
相传这首诗是周朝一位士大夫写的。西周灭亡后,昔日的宫殿变成了田地,种满了庄稼。这位士大夫经过这里,怀想起故国,心里感到无限悲伤。后来,“黍离之悲”就用来表示亡国的哀痛。
读一读
这首《硕鼠》也是《诗经》中朗朗上口的名篇,多读几遍,想一想:诗中的“硕鼠”“黍”有什么喻义呢?
硕鼠硕鼠,无食我黍!
三岁贯女(通“汝”),莫我肯顾。
逝(通“誓”)将去女,适彼乐土。
乐土乐土,爰(yuán)得我所。
大老鼠啊大老鼠,不要再吃我的黍。
多年来养活你,你却不肯把我眷顾。
我发誓摆脱你,前往那无忧的乐土。
乐土啊乐土,那里才是我的好去处。
菽和麻
如果说黍和稷是粮食界的落魄贵族,地位大不如前;稻和麦是后来者居上,成为两大“新贵”;那接下来要认识的两种谷物,就是成功的“转型者”了。
阿牛:你知道“五谷不分”的近义词是什么吗?
大康:那还用说,当然是“四体不勤”啦!
阿牛:就知道你会这么回答。与“五谷不分”意思最接近的,是“不辨菽麦”才对。
“菽”是什么,说起来你可能会觉得陌生,但要说“豆”,你一定熟悉多了。菽,其实就是豆类的总称,也可专指大豆。而“豆”字,最初的字义其实是一种盛放食物的器皿。
大豆在我国历史上也曾是一种主食,尤其是在土地贫瘠的地方,大豆比小麦等作物更能存活,给无数人解决了充饥的难题。但“豆饭”毕竟粗糙,而且不容易消化,所以不是主食的首选。随着稻、麦等谷物产量的提高,大豆就渐渐从粮食家族的舞台上退出了。不过,大豆并没有因此远离人们的餐桌,相反,在善于烹饪的中国人手中,大豆“摇身一变”,以各种新的面貌出现,更受人们喜爱了。
大豆还富含油脂,可以榨取食用油,这下,大豆干脆从粮食作物“转型”,跳到另一类农作物――经济作物的行列中了。
猜一猜
经济作物,就是具有某种经济用途的作物。农作物包含粮食作物、经济作物两大类。下列作物中,你能认出哪些是经济作物吗?
同样“转型”成经济作物的,还有“麻”。五谷之一的“麻”,在诗词中常与“桑”并肩出现,合称“桑麻”,它们有一个共同点,就是都与人的衣着有关:种桑可以养蚕,蚕丝可以织布;麻秆的表皮富含纤维,也可以用来织布。这么看来,麻与谷物好像没有什么关系吧?其实,麻的籽去壳后是可以食用的,这就是它能位列“五谷”的原因。和豆一样,麻也是在古代粮食不充足的时候,供人们充饥,后来渐渐地退出了粮食的行列。
大康:终于弄清楚“五谷”是怎么回事了。以后妈妈再嫌我“五谷不分”,我就一一说给她听。