首页 公文范文 医学影像与技术

医学影像与技术汇编(三篇)

发布时间:2023-09-22 18:13:00

绪论:一篇引人入胜的医学影像与技术,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

医学影像与技术

篇1

1. 规范工作流程,提高效率

放射科可以少上一台X线机,但是不能没有PACS。过去放射科的工作是“以胶片为中心”,患者到放射科先照片子,再写报告,带走的是他们的片子。有了PACS以后,现在患者带走的是信息。过去,放射科工作人员必须在患者片子冲洗出来以后,送到读片医生那里,医生才能写报告,因此读片医生必须等着片子,为此我们不得不把医生分成几组。现在应用PACS后,我们以“患者为中心”,患者在放射科照了片子后,所有图像集中到一个医生手里,根据图像给出一个整体的综合报告,毫无疑问这个报告比以前的报告更准确。

我们医院放射科上了PACS以后,放射科医生会给患者一个条形码。患者所有信息都储存在条形码上面,他们拿这个条形码扫描,取结果,最后他们所拍摄片子的信息变成了一个数字。过去患者拍摄片子是在放射科内走来走去,现在是一个号码,这种办法非常高效,不仅节省了我们人力和物力,还节省了整个科室的空间,明显提高了科室的运行效率。

2. 改善科室管理

应用PACS以后,我们考核工作量的模式发生了变化。医生专业分组跟过去不一样了,过去我们是传统放射科管理,医生按照使用的设备来分工。而现在我们的医生按照人体部位来分工,如:胸部影像、腹部影像、骨科或者神经影像等,这个变化对我们行业是非常巨大、非常重要的进步。当然,这个进步是逐步完成的,没有PACS是不能实现的。

PACS带给我们的不仅是一个图像系统,实际上它的RIS带有部分OA功能,对我们放射科做行政管理工作有特别大的帮助。以我为例,我不仅是一名放射科医生还是一个管理者。根据我每天的工作安排,7:40我开始读片,第一件事是把PACS打开,看一下患者预约检查的时间。如果患者约的时间比较长,那么我会督促工作人员加班尽量缩短患者的等待时间。PACS的质控和统计看起来很简单,但是对于放射科而言是一个划时代的进步,过去我们每天靠数小纸条来统计工作量,现在这些变得非常简单了。

3. 科研教学

我们放射科承担着繁重的科研和教学任务,过去部门工作人员看片子教学,片子非常旧,现在基于PACS的教学系统跟过去完全不一样,作为从事教学的人有特别深的感触,对我们是一个巨大的进步。

过去在做科研时,收集患者信息的工作很繁杂,片子要放到照片库里,数量非常大,查找很不容易。现在不会有这种问题,所有影像资料包括患者数据会在PACS里面,对科研来讲是巨大的帮助。

现在科研比原来条件好得多,给放射科带来了很多便利,应该说是一个非常巨大的变化,使我们放射科从一个传统的放射科发展成为一个现代化的放射科。

4. 3D后处理

过去我们看的片子是平面,把人体影像切成一片一片看。有了PACS以后,我们拥有了很好的三维后处理功能,使人回到立体的状态,这也是一个很重要的改变。过去看一个人的片子,照一个腹部有几百层,图像一层一层看当然是不现实的,但是还原成3D后,很容易发现病变部位。

关于PACS的一些思考

1. 专业人员配合

在论证调研建设和应用PACS的过程中,我有比较多的体会。在放射科推行一个与放射科业务工作“没有关系”的事情还是比较困难的,要想把这项工作做得比较顺畅,需要放射科内部有专人负责,这样才能与PACS供应商很好的进行配合。科室要搞信息化工作,专业人员的准备是非常重要的,我们科室有专门的工程师配合PACS供应商完成了PACS的建设工作。

2. 争取医生的支持

篇2

中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2016)30-0238-03

随着科学技g的快速发展和生活质量的提高,健康问题已成为大家关注的焦点。然而生活环境的污染、饮食结构的不健康和长期处于现代职场高压环境之下,很多人的身体出现亚健康状态:头痛、胸闷、失眠等健康问题困扰着现代职场白领,长期以往,身体不堪重负,疾病随之而来。面对这种情况,早期发现、早期治疗既可以减轻患者病痛,提高预后水平,又可以减少患者的经济支出。因此,对疾病问题的早期诊断就成为国内外医学界关注的焦点。

然而由于医患交流以及过去医学影像不清晰、保管难等问题,始终制约了精准医疗的发展。目前随着科学技术的进步和互联网技术的突飞猛进,影像学被越来越多的应用到各种疾病的检查中去,医生读片诊病,影像成了医生重要的诊断辅助工具,难以被低估,不能被替代。随之影像学科也成了当今迅速发展起来的一门综合学科,多门课程如通讯、计算机、医疗交叉,为医务工作者提供尽可能准确的辅助诊疗方法,这将是今后影像学科持续发展的重要方面。

日常生活中我们在对体内和体外的血液细胞、器官组织进行无损害性检查时,通常会选择诸如:数字线摄影、核磁共振、超声波三维诊断等治疗方法,这些拍片式的诊断方法可见即可得,不仅生动补充了书本上的人体正常组织以及病灶组织的解剖学知识,同时对影像引导下的教学、检查、穿刺、手术等有着不可低估的作用。但是医疗图像A生成往往会因自然界信号的干扰、信号传输过程中的衰减、医疗设备的成像原理、光线和显示屏等原因的影响,所显示出来的影像像质往往不够清晰、感兴趣内容不突出,或者不适合人眼观察或者机器理解分析,同时医学影像本身也有图像分辨率不高导致图像模糊不清或者无明显边缘、噪声偏大、结构信息缺乏的问题, 最终生成的影像不能准确定位病变部位以及病变性质,临床诊断面临各种困难。如果有一种方法能对生成的医学影像进行数据处理提高影像的清晰度,增强医学影像的可读性可分辨性,临床医生可以结合解剖学和生理学对病变组织有针对性的观察并诊断,这将大大提高临床诊断的准确率。因此,医学影像的数字化处理对医疗卫生、信息技术、生物科学等学科来说无论在理论研究还是临床应用方面都起着关键作用,这是人类认识疾病并对之精确诊断的重要环节,这将是一门具有较强应用性和长远发展性的课题。

1医学影像的发展及意义

1.1国内外医学影像的背景及对其图像处理的意义

1895年德国物理学家W.K.伦琴在实验室拍摄出其夫人手指和的影像,自此 “X射线”被发现,并被影像学逐步引进到医学领域。经过30多年的研究与应用,医学影像起着翻天覆地的变化,随着计算机技术的引进和广泛应用,影像学科更是呈现出跨度大、知识交叉密集的特点,如今基于计算机算法的图像处理技术也已经成为医学影像学中发展迅速的领域之一。

1971年,英国科学家汉斯・基于计算机技术原理设计出第一台X-CT诊病机,这一发明在医学界引起巨大的轰动。从此,对医学影像的数字成像技术的研究开始发展壮大,各种医疗设备也被开发出来,它包括计算机 X线摄影( Computed Radiography, CR)、数字 X线摄影( Digital Radiography, DR)、 X射线计算机断层成像( X- Computed Tomography,X- CT)、磁共振成像超声( Magnetic Resonance, MR),超声( Ultrasound)成像、光纤内窥镜图像、磁共振血管造影术( Magnetic Resonance Angiography,MRA)、数字减影血管造影术( Digital Subtraction Angiography, DSA)、单光子发射断层成像( Single Photon Emission Computed Tomography,SPECT)、正电子发射断层成像( Positron Emission Tomography, PET), EEG脑电图、 MEG脑磁图、光学内源成像等。

本文着重论述的 X- CT( Computed Tomogaphy)意为 X线计算机断层扫描技术,是用 X线束对器官组织进行断层扫描,应用物理原理来测量X射线在人体组织中的衰减系数或吸收系数,再经计算机进行数学计算来对图像进行三维重建。按照测量的衰减系数的数值排列成一个二维分布矩阵,计算出人体被扫描组织断面上的图像灰度分布,从而生成断面图像。X-CT以它高速、高分辨率、高灵敏度的探测器螺旋式旋转来获取器官组织的多方位、多层次的断面或立体影像,经临床实际应用,它能发挥有别于传统X线检查的巨大作用。它能综合反映人体组织在解剖学方面的功能、性质,还能提供人体被拍摄部位的完整三维信息,器官和组织结构清楚显影,提示病变,已与核磁共振、超声波等诊断方法一样成了医生获取信息的重要来源。并且具有其他医学设备不可比拟的优点,X- CT成像简单方便、对人体损伤小、组织结构密度分辨率高,这在病理学和解剖学研究中尤为重要。特别是临床在对肿瘤的诊断中X-CT的分辨率要远远高于其他医学设备成像,研究显示在对于1~2厘米的小肿块的检测上,X-CT显示率高达88%,而B超、MRI等仅为48%。在针对肝脏疾病实验的拍片中, X-CT可以较清晰的显示出多种器官病变和功能性状,如肝癌、肝血管瘤、脂肪肝等,其对肝癌的诊断准确率高达93%,最小分辨率可显示为1.5厘米,

可以直接观察到肝静脉、门静脉与肿瘤大小、位置之间的关系,并能诊断出肝静脉、门静脉有无癌栓,为医生的精确诊疗提供了重要依据。

由于器官病变的位置、病灶大小、病程长短等自身因素,加上设备电子元器件、嘈杂的环境以及人为操作等因素的影响, X- CT在对病灶做定位影像、定性精确诊断时常常会有所限制,即它能反映出器官的异样变化,但却不能反应目前器官的生理功能。现实工作中采集到的数字化影像或多或少的存在一些问题:伪影、雪花、边缘不清、病灶不清、对比度不强……凭借肉眼无法从整张影像中清晰分辨出病灶部位或者确性病理改变的程度,要想精确诊断,还需做进一步的检查。

目前,对 X- CT图像处理进行处理大部分的研究还集中在预处理阶段,即研究通过调试设备、提高影像像素、提高出图效率、减少外界干扰等方式增强医学影像的可读性和敏感性。而对于医学影像成像后的处理则相对冷门,其中对部分内容的研究也比较单一,如仅仅单独研究医学影像的降噪或增强。同时应用降噪、增强、分割技术来处理影像的研究较少,理论研究也停留在可行性阶段,针对单一疾病的医学影像处理研究还不常见。

1.2医学影像常用的诊断方法

目前我们常用超声波、核磁共振、X-CT等设备生成的医学影像作为辅助诊断方法。其中:超声波是使用声波来探测病理并生成平面图像的一种诊断方法,由于其具有方向性好,穿透力强,声能集中,操作简便,能反映出人体组织的灰度形态和结构等优点,被影像科广泛采用。其中 B型超声波采用超声平面成像,在超声屏上显示出病变部位周围有明显的强弱不等的回声区,表现为亮度不等的光点、结合解剖学和生理学知识,可判断这些高光区和暗区的病变性质。且价格低廉,诊断快速,但缺点是对于1~2厘米的小肿块诊断准确率不到达48%。

核磁共振是诊断组织病理变化的一种新的方法,通过层片选择,频率编码,相位编码,实现对接收到的电磁信号在人体内部的准确定位,根据接收到的电磁信号的频率、相位的差别成像,完成对器官组织的检测。例如:核磁共振检查原发性肝癌时通常表现为信号改变,T1W1驰豫时间加权图呈低信号,T2W2加权图呈高信号。其特征性影像为病灶内出现粗大引流或供血血管的流空信号,该信号提示肝癌结节内有动静脉短路形成。但缺点在于检查价格昂贵,且核磁共振设备在我国普及率较低,对于1~2厘米的小肿块诊断准确率较低。

X- CT是用 X线束对器官组织进行断层扫描,再经计算机由于分辨率高图像清晰,能够扫描到早期刚发展起来的较小的肿瘤,这对病人早诊断早治疗不至延误病情具有重要意义。比如:X- CT肝癌表现与大体病理形态一致,平扫多为低密度,少数为等密度或混杂密度,外形不规则呈球形或结节形,边界模糊。增强扫描表现为低密度区略缩小,境界变得较为清楚。肿块中心部位常因肿瘤组织坏死囊变形成极低密度区。研究显示在对于1~2厘米的小肿块的检测上,X-CT显示率高达88%。目前X-CT已成为各种疑难杂症中最重要的诊断方法。

1.3对医学影像进行数字图像处理的可行性及意义

在实际图像信号的生成和传输过程中,由于受到医疗器械自身、人为操作控制和自然界噪声等干扰的影响,多多少少会出现细节模糊、对比度差、噪声较大或存在伪影等问题,影响到影像质量。且成像是用亮度不等的灰度表示,加上病灶发展早期其空间形态变化通常比较小,拍出的片子肉眼很难观察,误诊和漏诊的情况也时有发生,致使病情诊断准确率下降,医务工作者的效率也难以体现。因此,有必要运用适当的技术和方法来处理和分析医学影像,提高影像质量,这将有助于减少误诊和漏诊率,提高诊断准确率。因此,研究医学影像的计算机辅助诊断技术和数字图像处理技术具有重要的意义和实用价值。

在医学影像领域的数字成像技术有个共性:基于计算机将图像采集、显示、存储和传递分解成各个独立的部分,将每一部分图像信息分别数字化,这种共性为我们以后对各功能模块进行单独优化提供了便利,对其实施图像数字信息的后续处理提供了可行性。

以X-CT成像为例,对影像进行预处理可以过滤掉影像上的不利影响,处理掉无用的信息,保留或恢复有价值的信息。通过过滤掉不利因素,加强病灶信息的可读性,突出感兴趣部位,清除各种干扰的同时能保留所摄影像的形态和边缘,有效的改善图像视觉效果,为医生诊病提供了依据和便利,这就达到了图像处理的目的。

2数字图像处理在医学影像中的具体应用

图像处理(image processing),在医学上也被称作影像处理,是指将图像信号转换成数字信号后使用计算机对医学影像处理和分析,提高并改善影像的质量供医生有效诊断的专业技术。将将人设为对象,图像设为目标,输入低质量的图像,输入改善后高质量的图像,当图像达到满足人的视觉效果为最终目标。图像处理方法通常有图像增强、复原、编码、压缩等等。本文将重点讨论图像去噪、增强、分割在医学影像中的应用技术。

2.1图像去噪

影像的生成和传输常常受到自然界各种声音的干扰导致影像质量下降,就像我们在日常生活中交谈时被其他声音打扰一样,在语言中表现为听不清对方说话, 表现到影像上,则是原本很清楚的图像,因为机械本身、电子元件、外界杂音等干扰原因产生各种各样的斑点或条纹,图像变得模糊不清,此即为图像噪声。噪声的存在势必影响后续对影像的分割和理解分析,所以图像去噪是预处理的重要步骤之一。去噪的方法有很多,结合影像特点、噪声的统计特征及频谱分布规律,目前常用均值滤波、中值滤波、低通滤波等算法来对图像进行平滑处理。

2.2 图像增强

图像增强(image enhancement)是数字图像处理领域中的一个重要分支。影像学上的图像增强和复原的目的是为了提高医学影像的质量,清除干扰、降低噪声,通过增强清晰度、对比度、边缘锐化、伪彩色等来提高影像的质量,或者转换为更适合人观察或机器识别的模式。不同于图像噪声,在图像增强中通常不考虑影像降质的原因,它不需要反应真实的原始图像,只需突出图像中感兴趣的内容。但要对降质的原因有所了解,依据降质的原因建立“降质模型”,然后各种滤波方法和变换手段增强图像中的背景与感兴趣部位的对比度,比如:增加图像高频分量,被照人体组织轮廓变得清晰,细节特征明显;增加低频分量,能有效降低噪声干扰,最终达到增强图像清晰度的目的。

图像增强根据空间不同可划分为基于空间域的增强方法和基于频率域的增强方法。基于空间域的增强方法是对图像中的各个像素的灰度值直接处理,算法有直方图均衡化、直方图规定化等;基于频率域的增强方法不直接处理,而是用傅里叶变换将空间域转换成频率域,在频率域对频谱进行处理,再使用反傅里叶变回到空间域,算法有低通滤波、高通滤波、同态滤波等。

2.3图像分割

图像分割是数字图像处理领域的关键技术之一,目的是将图像中有意义、感兴趣的内容从背景里剥离,划分为各个互不交叉的区域。有意义、感兴趣的内容通常是指图像区域、图像边缘等。分割是后续图像理解分析和识别工作的前提和依据。目前已经开发出很多边缘检测和区域分割的算法,但是还没有一个算法对各种图像处理都有效。因此对图像分割的研究还将继续深入,在以后很长一段时间将始终是热门话题。

图像分割方法基于灰度值主要划分为基于区域内部灰度相似性的分割和基于区域之间灰度不连续的分割。

(1) 基于区域内部灰度相似性的分割

基于区域内部灰度相似性的分割是确定每个像素的归属区域(同一区域内部像素是相似的),从而形成一个区域图集,来对图像进行分割,常用算法有阈值分割法、形态学分割、区域生长法、分裂合并法等。

(2) 基于区域之间灰度不连续的分割

篇3

近年来,随着教育改革的更新与发展,教育思想观念和教学模式的转变 全国医学院校都经受教材快速更新、课时不断缩减的考验。依据教育部《关于全面提高高等职业教育教学质量的若干意见}(教高[2006J16号)文件,我校全面推进教学改革。根据医学影像技术专业人才培养目标,教师多年的教学经验,对本专业人体解剖学教学内容、教学大纲和教学方法等方面进行了改革,并收到了较好的教学效果。

1 精;咸内容,建立"理论引导,实践为主"的教学格局

大专生在校学习时间短,社会对医学人才综合素质要求不断提高,而课时不断缩减,教师制定的教学计划精减了教学内容和调整了理论和实践学时。医学影像技术专业人体解剖学共108学时,理论缩减为66学时,实践增加至42学时。教学内容不同,理论和实践学时安排不同,如运动系统,理论20学时,实验12学时;神经系统,理论12学时,实践8学时。精减教学内容其目的在于提高学生动手能力、观察能力和实践能力,建立"理论引导,实践为主"的教学方针。

2 根据专业培养目标,修订教学大纲

随着教育思想观念、教学模式的转变,教师进

一步优化教学内容体系,整合序化教学内容,突出

"基础理论、基本知识、基本技能",强调"必需和够用",重视"技能型"人才的培养。在教学内容设置上,结合我校医学影像技术专业人才培养目标,人体解剖学与临床课程的联系,进一步修订、补充和完善理论和实践教学大纲突出教学内容的"应用性、实用性"。在教学大纲中,各章补充X线影像。如:脉管系统理论教学大纲补充心的位置、外形的的X线影像;实验教学大纲补充胸部X线正侧位片,观察不同的心影。

3 教学方法与教学手段改革

教师结合实际,进一步从教学设计、教学方法和教学手段方面改革提高教学质量和效果。

3.1 教学设计在教学内容的设计上强调"必须、够用",加强

学生实践能力的培养。以教学大纲为依据,以问题为中心的教学方法(PBL),引导学生独立思考,启发学生的创新意识和能力。采用启发式教育思想,帮助学生掌握重点、突破难点。借助多媒体、挂图和举例等手段使学生了解重、难点内容,为临床实践奠定基础。

3.2 教学方法理论教学采用多媒体与传统教学方法相结

合,理论联系实际、联系临床、以问题为中心教学、案例教学、归纳等方法调动学生的积极性和主动性,通过分析病例,培养学生分析问题的能力和理论联系实际的能力。如:一小孩误吞一梅核,经哪些器官排泄至体外?心脏的外形结构归纳为"右上心底左下尖、前胸下脯两个面、左右下3个缘、表面4沟分界线"。

3.3教学手段

充分利用现代教育技术,制作图文并茂、清晰、直观、形象生动的多媒体课件,并应用于教学,丰富了理论教学形式,提高了教学质量。学校建立了电子阅览室,护理专业人体解剖学被评为校级精品课,教学资料已在校园网资源共享,教师和学生可以在业余时间上网学习和查阅有关资料。

4 改革实验教学,培养学生观察能力人体解剖学是一门实践性非常强的学科,在

教学过程中,加强实践教学环节,注重学生的观察

能力的培养。

4.1 加强实验教学环节,促进理论与临床的联系在实验教学中,按实践教学大纲要求,观察各系统标本和模型,同时引导学生观察X线片、造影片、CT扫描片、MRI图像等影像学素材,使解剖学知识与影像学知识联系在一起,通过多层次的观察,攻克学习难点,逐渐完成由解剖学形态观察向

影像学应用过渡,提高学生观察能力和分析能力,为临床应用奠定基础。

4.2 改革实验教学环节,分组实验改变原有的实验过程实验教学环节改为:组

织教学教师讲解示教实验内容并提出问题学

生分组观察并讨论教师指导学生观察并答疑教师检测实验效果总结。

4.3 采用综合课直接在实验室上课某些章节内容教师利用挂图、标本或模型直

接在实验室教授,边讲边观察,直观形象,使理论和实践相结合。这种直观教学使学生容易理解和

记忆,收到良好的教学效果。如骨学和感觉器。

5加强实验室建设,改善实验教学环境和条件学校高度重视实验室的建设和发展,成立人体解剖学实验室、标本陈列室和模型室等共22间,现有尸体65具,陈列标本1000余件。实验室安装了通风设备和抽风式尸体解剖台,并配备标本柜。教师利用课余时间制作各类标本,改善实验条件,优化育人环境。教师课前实验准备良好,保证实验课时间及质量,实验开出率达

100%。

6 充分利用资源优势,积极开展第二课堂活动

利用课余时间开放实验室、标本陈列室,并安排教师辅导,指导学生观察和解决学生提出的问题,培养学生观察能力、动手操作能力、发现问题、分析问题和解决问题的能力。

在教学过程中,教师不断更新教育思想观念,转变教学模式,改进教学方法和手段,并取得一定效果,使教学质量得到明显提高,教师的综合素质和教学能力得到很大提高,但仍存在以下不足。主要体现在以下几个方面:教学改革的力度不够,尚需更好的深入发展,努力开展科研及教研活动,以教科研促进教学质量的不断提高;部分实验室局部标本、游离标本或模型不配套,不能满足多个班级同时开展实验;X线片、造影片、CT扫描片等影像素材较少,不能满足教学需要[1-6]。在学校发展和教学改革的过程中建设全方位的多媒体化的教学模式和计算机辅助多媒体教学实验室,不断创新,提高教学质量。

参考文献

1 吴仲敏.临床医学专业人体解剖学实验教学改革的探索与实践.四川解剖学杂志,2009,17(2):43-44.

2王长月.医学影像专业人体解剖学实验教学改革的研

究.中华现代影像学杂志,2007,4(5):23-24

3 付升旗,陶晶,刘恒兴,等.人体解剖学教学改革的探索与实践.四川解剖学杂志,2007,15(4):67-69

4 马腾,刘学政,王小飞人体解剖学教学改革的探索与设想.解剖学杂志,2007,30(3):383-385.

友情链接