首页 公文范文 数字化制造技术

数字化制造技术汇编(三篇)

发布时间:2023-09-18 16:32:06

绪论:一篇引人入胜的数字化制造技术,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

数字化制造技术

篇1

一、数字化技术与自然人结合

数字化技术与自然人在车间生产中各有特点。数字化技术能够对车间内的控制信息、设备信息、库存信息等进行管理和控制,但是缺乏灵活性,而人却能够随机应变。将数字化技术控制的各种设备和数据通过无线通信网络传到自然人的数字化设备,自然人通过数字化设备能够全面的掌握车间的运行状态。

二、数字化人的特点

因为数字化设备与自然人结合后,人成为车间内的移动控制者,他能够不断地来回移动,对正在运行的设备状况进行随时监控,也能够对产品加工工艺进行调整。车间内采用的无线局域网技术,使得人的这种移动控制成为可能。软件上车间各种信息应能快速反映到数字设备上,并按照人的操作发出指令,控制设备。

数字设备功能多,体积小,因此集成是必然的选择。硬件上要集成多种芯片,包括WIFI、蓝牙等通信芯片,还包括存储器、处理器、其他模块和各种接口、电池、显示器等。软件上要与上层工作站通信,发送各种信息,与设备通信,这么多功能都要集成在一款软件之内,占用资源要小,功能要齐全。

人在车间内要能够监控所有运行设备,但现在企业内加工设备往往五花八门,因此兼容性是非常重要的,也是非常难以实现的。其原因第一个是不同厂家的设备运行模式不同,要想兼容就要研究所有的通信协议,然后才能通信,从而获取设备的信息并进一步控制设备,单就这一步已经极为困难;第二个,不同时期的设备控制方式是变化的,新的设备容易通信,旧的设备通信难度大。

另一个问题是操作问题,大量的各种设备,操作方式不同而且操作复杂,加之各种信息,使得实际上的操作任务是很繁重的,如果人机界面操作不简易,那么很难完成所有任务。因此人机界面的易操作性非常重要,好的人机界面会给操作带来便捷,从而提升工作效率。

三、以数字化设备为主导的人机协同制造

1.运行模式

数字化设备管理系统能够对车间进行监控,但人脑的决策和判断同样重要而且无法为数字化系统实现。人不再是具体的操作加工设备,而是根据设备状况,对工艺、物流等进行安排和调整。数字化设备与人的结合,对设备之间的组合、加工工艺的规划、数控加工程序、刀具工具的使用做出具体安排,并实时监控。

2.以数字化设备人机协同制造的特点

传统加工制造,所有的任务、工艺、操作都由管理层设定,下达到生产现场,这个过程中,最上层是办公室里负责设计和工艺的管理层,下面设备层只是命令的执行者,这是绝大部分的数字化制造中都采用的模式。

在新的加工制造模式中,上面的被颠覆,由于数字化设备连接了管理层和现场设备层,因此设备层的操作人员同样是车间的管理者,并且由于操作人员更接近生产设备,可以直接观察生产现场的状况,因此对于车间的直接控制其效果还要优于上面的管理层。

传统车间,产品的设计人员一般在技术部门,而现场的操作人员则完全按照计划完成加工任务,这使得加工中如果出现问题就无法及时的修补,带来时间和经济上的损失。新的加工模式很好地解决了以上问题,生产工艺的制定者是身处生产第一线的操作数字化设备的人员,这样的工作人员通过对数字化设备监控车间,发现问题能及时处理,消除了设计人员和操作人员间的距离,减少了处理问题的时间,提高了生产效率。

数字化设备与人的结合,最大限度地弥补了数字化设备和自然人各自的缺点,发挥了二者的长处和优点,最大限度的使得通信技术和人的判断得以结合,为新一代的生产制造模式提供了良好的平台,是新型制造技术发展的重要方向,一部分已经为现代企业所采用,其余的也必将成为制造业未来发展的潮流之一。

参考文献:

篇2

中图分类号:TP393 文献标识码:A 文章编号:1007-9416(2012)08-0195-01

随着数字化无图制造技术的发展,数字化制造系统已经演变成钣金零部件加工和制造的关键性工具,钣金数字化制造的信息载体已经完全由“模拟量”转换成“数字量”。众所周知,“数字量”信息其做大的优势就是安全、精确、并行分布式处理、传递易行、容量大。钣金数字化制造系统的信息所表达出来的“数字化”,往往会引发信息处理上的一些变化,譬如:其所引发的技术革新和操作手段都有了巨大的变化和更新,因此,我们必须要在数字空间的实际运行模式中不断的完善和探索。

1、钣金数字化制造现状分析

激光切割制造技术的出现,完全替代了“剪切-冲”的工艺流程,它的特点就是灵活且具有较大的柔性,其缺点就是运作成本比较高。这种制造技术最常见于一些形状不规则的产品或器件上,随着小批量零部件的大量生产,激光切割制造技术越来越受到人们的重视。因为激光切割具有高柔性和高精度以及三维设计技术的不断完善和成熟,使用者可以完全从新设计和流程中取得收益,这样就可以大大降低生产成本,而且还能够有效地缩短工期。所以新的钣金工艺其实就是从设计开始的,及设计+激光切割+折弯+焊接/铆焊。多重折弯工艺在国内的箱体制造业已经比较普及。好处是省掉了传统的加强筋。在实际生产过程中我们发现激光具有切缝细,精度高的优秀特点。通常情况下,都是一次性进行切割,然后配合4次的折弯,从而实现4个工件。这种制造方式,完全超越了传统工艺的设计思路,所以为缩短工期奠定了基础。激光切割的不断普及,市场要求提高速切割,只有这样才能降低待机的时间,向厚板,高反射材料进行扩展,降低电耗成本等。例如雅马哈2010年所推出的by speed机型,其切割的速度可高达40m/min,加速度为3g,它能够切割20毫米厚的不锈钢,12毫米厚的铝合金,6毫米厚的紫铜等,而所耗电只有60kW左右。机器的有效利用率能够达到95%以上。

2、钣金数字化制造系统模式

2.1 数据源的整合与集成

钣金零部件的数字化制造数据大都是采用集中的管理与存储,这样就可以形成一个惟一的数据源。每一个系统都是经过产品的具体数据管理系统进行访问制造相应的模型、工装和工艺信息,从而改变了模拟量的传递模式,满足了所有信息在不同的用户之间与不同的应用系统之间的集成和共享。钣金零部件制造数字化数据库所有的知识组元可以随时更新而且还能够多次使用,钣金数据库知识系统的完善和建立,极大程度地满足了所有信息的数字自动化表述,同时,在每一个数字化的设计当中都可以重新使用所有者的制造技术,这就完全颠覆了传统意义上,单凭经验和多次的试验设计模式。集成系统协同设计就是把数据库、知识重用工具以及应用系统整合到一个相同的平台,该平台为工程设计的统一介质,使得整个数字化流程固定化,对所有数字化制造流程进行统一的控制和管理,从而进一步集成了各大子系统制造工艺,完成了其要素的设计。

2.2 数字量控制与传递

在传统钣金制造模式中模拟量主要是依靠传递实现的,所有零部件的生产流程中所有的环节都缺少一个整体的数字化定义,其所生产的成品难以确保精度和准度。数字化制造则是通过前提准备,将每一个使命的设计要素准确地进行了数字化的表述,凭借数字化的信息驱动生产材料加工的所有过程。通过对零部件模型的设计,就能得到所需产品的具体尺寸和形状,不过由于在零部件生产过程中出现很多的中间不确定状态,所以很难对设计信息向制造延伸。设计和制造模型属于相同对象的不同组成部分,其分别用于两个不同的生产阶段。确定了内容与工序之后,制造模型主要是结合工艺生产过程中的具体因素,对产品做出的一个详细描述,把以往制造模式中通过模拟量表达零件尺寸与形状的所有信息进行了数字化的定义,是工艺过程设计和工艺资源设计的依据。

3、钣金制造要素设计

3.1 知识建模

知识建模其实就是根据钣金零部件生产过程中所出现的知识,通过钣金零部件将其串联起来,把钣金制造和加工过程中所有知识作为一个整体系统,从横向和纵向两个方向进行归纳建模。纵向方面主要是从宏观到微观组元进行构建知识系统,同时依据不同知识组元易难程度进行分层建模,通常都是将该系统划分为型、域、属、族四个不同的层次。知识分类的最基本的单元就是型,它是根据知识具体求解对象的疑难程度进行分类,主要包含实例、基型和典型知识。横向方面,通过进一步地分析所有组元间的相互依赖关系,建立一个如同记忆网一样的模型,把钣金相关知识转化为由制造要素所组成的网络,建立一个完整、科学、便于管理的钣金知识库。

3.2 知识使用

基本类型的知识对形成问题解方案的作用方式分为表型和典型两种。知识可直接形成问题的解方案,基型知识则部分形成问题的解方案。钣金制造指令设计、成形模具设计等问题求解,根据知识的层次模型使用对应的属及基类知识,开发不同的推理方法,如:基于表型知识的推理、基于典型知识的推理、基于基型知识的推理等。以工艺流程设计为例,对于典型钣金零件,通过归纳总结典型方案,根据各种条件检索得到合理的工艺流程;对于非典型零件可以依次采用基于实例的设计或创成式方式来完成;知识检索采用基于编码的精确匹配方法。

4、结语

无图制造技术的发展,为钣金零部件的生产和加工提供了一个巨大的发展空间,其主要就是因为无图制造技术不但涵盖了最新信息和最前端技术,而且更重要的是它促进了生产技术的数字化智能化的发展。本文通过对钣金零件数字化制造系统模式的研讨和分析,提出了钣金数字化制造模式和解决思路,其中制造模型是面向制造过程对钣金零件信息的组织,采用集成管理的方法形成了钣金数字化制造的数据源。

篇3

信息技术不仅已经被广泛应用到人们日常生活、生产等各个领域,同时也在很大程度上促进了工业制造领域智能化的高速发展。我国数字化制造技术在工艺设计、制造数据管理以及生产过程控制等环节发挥了一定作用,但是有些技术在该领域中的应用水平相对较低,因此,在未来发展中必须构建以企业产品为背景的数字化制造技术应用研究。

1.数字化制造技术概念简介

数字化制造技术基于虚拟现实技术、计算机网络技术、快速原型技术、数据库技术以及多媒体技术等多种现代化科学技术,可以根据不同制造企业的需求,实现资源信息收集和整理,产品信息、工艺流程信息、资源信息自动整合分析、规划以及重组,实现对产品进行设计、功能仿真以及原型制造,并根据用户对产品的实际需求进行功能调整或整体优化设计。

2.数字化制造技术的应用现状

(1)产品数字化设计。产品数字化设计是指产品在设计阶段充分利用计算机,在图形设备(CAD)的辅助下可以将产品的图形设计出来,同时也要完成产品功能设计、结构分析等多个产品设计环节,在数字化设计过程中使用了软件绘图、编辑图形以及分析等技术,技术人员也可以利用数字化设计程序对产品结构设计进行优化与完善,运用计算机强大的计算功能、分析功能以及比较功能在各种设计方案中选出最佳方案。

(2)数字化分析。数字化产品分析功能也是基于计算机辅助技术而成,可以对结构复杂的产品进行优化设计,产品优化设计过程中主要利用了力学性能对其进行分析,并运用CAE软件对产品的综合性能及安全性、稳定性、可靠性等方面进行模拟分析,通过模拟不同产品在实际上的运行状态来确定其是否存在设计缺陷,如果发现设计缺陷可以立即对产品设计进行优化,以确保最终产品在实际运用中的综合性能等方面可以满足用户需求。

(3)数字化生产工艺。数字化生产工艺是指产品在生产过程中利用计算机对生产过程进行控制,技术人员可以将产品零件的形状、尺寸、材料以及处理过程等数据输入计算机,并将该产品在生产设备中的工艺参数输入到计算机中,这样计算机便可以对该产品的生产工艺进行数值计算、逻辑判断以及推理,并根据所输入的参数编制出最佳的工艺内容及路线。

(4)数字化制造。数字化制造主要是基于CAM软件而成,该软件可以根据技术人员设计出的模型进行自动编程,并可以利用计算机与其他辅助软件实现仿真制造生产过程,并可以自动判断出产品生产过程中会遇到的干涉及碰撞等问题,计算机软件自动编写的程序需要技术人员对其进行修改,以便计算机编写的程序可以满足产品的制造要求,在程序加以处理后便可以传输到数控机床上进行产品的实际加工,如果发现产品加工中存有缺陷,技术人员可以在数控机床的控制端对其进行微调。

(5)数字化管理。产品数据管理是工业制造领域数字化管理中的核心内容,企业一般都是通过CAD/CAM系统实现对产品数据的数字化管理,并可以对所产生的产品进行全生命周期数据管理,不仅可以根据企业信息的管理要求对图纸、工艺文件进行整理,更可以根据企业的运行管理需求进行市场调研、产品更新等一切与生产有关的数据管理,而这也是在信息时代有效提高制造企业市场核心竞争力的有效途径之一。PDM技术不仅在我国工业制造领域中占有重要的地位,同时也是计算机领域中的核心技术,而在我国只有一部分大型企业在发展中运用了PDM技术,这也为这些大型工业制造企业带来了可观的经济效益,因此,在新时期我国工业制造领域应充分利用PDM技术。

(6)逆向工程。传统的产品设计无法实现产品的“复制”过程,而数字化制造技术的应用有效打破了这一限制,逆向工程可以根据已有的产品通过分析研究来获取其设计过程,而逆向工程在工业制造领域中一般都应用到企业无法获取产品设计方法的情况下,利用产品实物可以在很大程度上推导出产品的设计方法及工艺流程,所以该项技术在新时期已被广泛运用到新产品的开发或旧产品的改进等,对我国工业制造领域在新时期的高速发展有着重要意义。

3.结语

现阶段我国数字化制造技术正在不断向着产品集成化、管理网络化方向发展,同时产品生产过程的智能化、虚拟化、绿色化以及柔性化等都是该项技术未来发展中的必然趋势,其不仅对提高我国工业制造领域的生产效率及质量有着重要意义,同时也可以更好地促进工业制造领域在新时期向着可持续发展方向迈进。

参考文献:

友情链接