发布时间:2023-10-13 15:36:35
绪论:一篇引人入胜的教学设计的重点,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

引言
初中数学的教学改革一直以来都是教育届的热点话题之一,如何激发学生学习的积极性和主动性,如何实现课堂教学整体质量的快速提升,不同的专家学者从不同的角度入手提出了很多建设性的建议,本文中,笔者将从教学设计方面入手,研讨初中数学教改的相关问题。
一、初中数学教学设计基本概念阐述
(一)基本内涵阐述。
所谓初中数学教学设计是指为了达到更优化的教学效果,通过理论灌输和教学传导等方式,运用科学的逻辑和思维研究数学问题,确定教学内容,明确教学方向,建立起一整套较为完整的解决方案和对策。
(二)外延阐述。
当前所谈论的初中数学教学设计还有外在的一些定义,它泛指涵盖教学规划、教学过程、教学评估、教学创新等在内的一整套的体系建设工作,期间涉及学生、教师、教育业务主管部门等多方,是一个内在互动机制较为完备的体系。
二、对当前我国初中数学中教学设计存在的问题分析
(一)思想认识方面和重视程度方面还跟不上。
当前,我国初中数学中教学设计在思想认识方面和重视程度方面还跟不上,主要基于以下几点原因:第一,长期以来形成的教学思维短时间内难以改变,导致在教学设计方面长期不投入主要精力;第二,各个学校的文化课整体压力较大,初中数学教学的转变空间不大,很多一线授课教师也没有太多精力去深入研讨教学改革;第三,由于流程分工和职能划分等因素限制,导致工作推进方面难度依然存在。
(二)教学方法和手段还比较单一。
当前,我国初中数学中教学设计中所涉及的教学方法和手段还比较单一,除了传统的教学方式外,能够发挥学生主动性和积极性的教学技巧不多,传统的教学工具也缺乏更多的技能要素,对教学的制约性也比较突出。从笔者不完全的调研过程中,可以发现:很多重点学校的初中数学教学设计还呈现出显著的地域差异,整体层次不高且发展水平参差不齐。
(三)缺少相应的考评机制和体系。
我国初中数学中教学设计一直以来都是一个“软性区域”,缺少可以量化的指标评估和科学配套的考评体系,从而造成了初中数学整体革新力度不够的问题。长期以来的教学改革,在初中数学领域中推广的并不到位,究其原因固然很多,但是,不可否认的是:我国初中数学教学设计方面整体缺少外部监督和推动是一个重要的原因。
三、未来初中数学中教学设计的步骤推进及规划
(一)教学设计方案撰写需严谨细致。
初中数学的教学设计方案一直以来都是一个短板,随着对数学教师技能整体水平的要求不断提高,初中数学的教学设计方案也逐步开始要逐步提高要求。笔者结合自身工作实践,提出了以下几点建议:第一,方案的制定要符合国家的标准化要求。一定要从政策角度入手分析,在方案设计之初就依照标准化的模块推进;第二,方案的制定要符合当地的实际情况。要使得方案的实际运行符合当地学生的实际需求,也要满足教育水平和层次的根本需求;第三,方案的撰写要经过认真的研讨和修订。应当通过集中座谈或者专家指导等方式,对初级方案进行反复认真的修订,对不理想的地方及时提出改进意见。
(二)教学设计考评体系建设应完备。
考虑到上下协调、统筹兼顾的原则,初中数学的考评体系建设应完备到位,具体来说包括以下几个方面:第一,教学目标及依据分析方面。首先,应当按课程标准确定具体的三维目标,然后明晰教学目标,最后应注意阐明目标确定的依据(如课程设计理念、课程标准、学生分析、内容分析等);第二,教学重点和难点方面。首先,所涉及到的重点、难点内容要做到具体明确,其次,对确立的依据要做到分析合理、科学,阐述环节要做到清晰(主要依据教学目标、学情分析等);第三,学生和教材内容评估方面。首先,要对学生整体学习状态进行评估,对存在的问题进行分析,然后,要分析教材内容在整个课程标准、本教材(必修或选修教材)和整个模块中的地位和作用;第四,教学过程设计(包括师生活动、时间分配等设计意图)方面。首先,教学过程描述简明扼要,清晰明了(如采用流程图的形式,简答扼要、更直观);其次,教学过程设计的内容完整,至少应有教学内容的设计、教师活动的设计、学生活动的设计、教学策略的设计及设计意图;最后,教学过程设计体现新课程理念,符合设计要求。
(三)积极借鉴采用先进的教学模式。
积极借鉴采用先进的教学模式是未来我国初中数学改革的重中之重,教学模式的好坏直接关乎着教学改革的方向性问题,也直接关乎着教学质量的高低,我国很多教育发达地区和城市都在不停摸索新的教学模式,比如说:江苏洋思中学的先学后教、当堂训练模式,就把学生主动学习的积极性引导到最大,营造了很好的师生互动关系;兖州一中的循环大课堂,研发了360度高效氛围的课堂教学方法,分阶段、分层次、分类别的教学体系也发挥了正向的作用;杜郎口中学的“预习―展示―反馈”教学模式,从细致处引导学生树立主动学习意识,大力推动了课堂授课的效果。
(四)采用灵活多变的教学手段。
教学手段一直都是授课教师最为关注的地方,随着科技的不断进步,教学手段也开始丰富起来。除了运用较为先进的教具外,教学的技巧也非常重要。尤其是在授课过程中,如何科学的提问,是本章节所要重点论述的内容。这里,笔者从自身工作实际出发,提出了初中数学课堂提问的优化策略:第一,按需设问(摸底提问、知识理解的启发性提问、触类旁通的发散性提问、归纳总结的提问、复习提问、理解提问、应用提问、评价提问)。一定要结合学生主体的内在诉求,设计提问的环节,把握提问的内在关联性等问题;第二,把握时机:学生对新知识不能知识迁移时,要能够做到衔接处理,学生注意力不集中时,要能做到及时掌控,遇到讲解知识的重点、难点时,要注意节奏和方式的调控,探寻知识之间的联系时,要注意深入浅出的引导工作;第三,要多多设计开放性的问题。开放式的问题可以帮助学生群体把握问题的结构要素,能有效促进其思维的深度和广度。
结束语
初中数学教学设计工作是一个系统的工程,不仅对教学至关重要,而且对教师自我提升、自我锤炼也意义深远。
随着我国教改整体不断深入,通过用心、用力、用情,我国未来初中数学教学设计一定能够迎来崭新的发展空间。
参考文献
[1]黄岳俊.梁好翠.农村中学生解答传统数学应用题影响因素的定量分析――基于“基础”和“创新”等因素的考察[J].数学教育学报.2012年05期.
[2]许荣华.谈如何在数学教学中渗透情感教育[J].数学之友.2012年02期.
“数学课程不仅要考虑数学自身的特点,而且应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型进行解释与应用的过程。”这就要求我们遵循学生的思维规律,在实际问题和数学模型之间架起一座桥梁,让学生在不知不觉中走进数学、感知数学。数学来源于生活并服务于生活,主体(学生)在思考问题时,既符合自身的认知规律,又有直觉洞察、直观猜想、合理归纳与活动思维过程,有利于提高自己对数学的认识。
二、身临其境,探索规律
“数学教学活动必须建立在学生的认识发展水平和已有的知识经验上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会。
在教学时教师应根据知识的内在结构和学生的学习规律,提供现象和问题,创设思维情境,引导学生主动参与,进行观察、思考、探索。这样有利于激发学生解决问题的热情,提升学生的学习水平。比如在探究一元二次方程的根与系数的关系时,我们可以按下列步骤来创设情境。
1.求三个一元二次方程的两根之和与两根之积。一般来说学生都是先把方程的根求出来,然后计算,学生可能体会不到什么,此时课堂气氛比较平稳。
2.求一元二次方程的两根之和与两根之积,这时很多学生会感到很繁,怕动手计算,课堂出现沉闷现象。此时教师立即口答出答案,学生就会感觉到很惊奇,为之一振,进而产生疑问:“老师怎么会看出答案?这里会不会有规律?”课堂出现窃窃私语,激活了学生的思维,活跃了课堂气氛。
3.提出问题:你能根据你开始的计算和老师的结论观察出一元二次方程的根与系数之间的关系吗?学生们跃跃欲试,开始投入到观察、思考、探索中去。
4.提出问题:你敢肯定你所猜测到的结论是正确的吗?再一次激发学生的斗志,使他们敢于说理、敢于证明,给予他们充分展示自己才华的机会。
三、由点到面,触类旁通
复习不是简单的知识重复,而是一个再认识、再提高的过程,复习中的最大矛盾是时间短、内容多、要求高。复习既要做到突出重点、抓住典型,又能在高度概括中深刻揭示知识的内在联系,让学生在掌握规律中理解、记忆、熟练、提高。比如在复习一元二次方程根的判别式和根与系数的关系时,可以把一元二次方程根的判别式、根与系数的关系和二次函数的有关知识相联系,根的判别式可以作为判别二次函数的图像与x轴的交点个数的依据:当>0时,抛物线与x轴有两个不同的交点;当
总之,课堂教学面对的是独立、有个性、有思维的学生,课堂教学设计应适应学生的发展,应随“学情”的变化而变化。课堂教学设计的成效如何,完全取决于教师对教材的理解、对学生情况的了解。只有教师具备“以学生为本”的教学理念,才能一切从学生实际出发、一切为学生考虑,才能真正做到教学服务于学生,实现“不同的人在数学上得到不同的发展”。
让我们先看一个案例。这节课的内容是七年级上册“同类项概念”的教学。教师首先按常规复习多项式的“式”、“项”和“次数”的概念。按惯例,教师会接着把同类项的概念写在黑板上,然后给出很多单项式,让学生判别它们是否是同类项,进行模仿练习。
然而我们也可以用设立创新点的教学设计,启迪学生的探究、创新思维。于是,教师在黑板上写
提问:“我们常常把具有相同特征的事物归为一类。在多项式的各个项中,也可以把具有相同特征的项归为一类,你认为上述多项式中哪些项可以归为一类?为什么?”以下是学生的探究。
学生甲:一、二、四、五、六、八项可归为一类,
学生的各抒己见,着实令人欣慰。他们用数学的基本概念对单项式作了分类,符合“具有相同特征的项归为一类”这一要求。这样的“探究”,是数学分类思想的一次很有意义的实践。然而,这些答案都没有涉及“同类项”的本质,还不能得到同类项的概念。
于是,教师继续设置第二个探究点,再提出两个问题:“(1)如果不考虑项的系数,只考虑字母怎么分?(2)如果还考虑字母的指数又怎么分?”新的问题使学生的反应更加热烈,连平时不爱动脑发言的学生都纷纷举手发表“自己”的见解。这节课气氛很活跃,最终朝着我们希望的方向发展下去,效果很好。
这样的设置并没有花费太多时间,却达到了探宄目的,使学生在数学分类思想指导下,用自己的思考得出同类项的概念。对学生来说,这就是创新。
由这一案例可见,创新点设计并不神秘。这样的方法,许多教师也常用。例如,教师创设情景让学生归纳猜想;教师提供问题让学生寻求解法(包括一题多解教师提供案例让学生反思获得“数学思想方法”等。创新点设计的要求是经常使用,每堂课都用,成为日常的教学手段。我们需要的是通过系列化的研宄,日积月累,培养学生的创新能力。
数学教学中的创新点,要从两方面进行设计:一是数学内容要“新”要求学生在数学上经过思考有所探索、发现;二是教学过程中要“创”教师要有意识地为学生设置思考空间。至于创新形式是多种多样的,可以是学生独立思考,进行归纳猜想、尝试求解、发散开放、推广发现、合作讨论;也可以是教师有目的地提问,采用启发式方式和学生对话。甚至教师做创新的示范,也可以作为“创新点”加以设计。
我们再举以下教例说明“探宄创新点”的教学设计。
例1:“对顶角相等”的教学。通常按照教材,用对顶角的补角相等加以证明,让学生模仿证明的格式,就完成了教学。这时,如果教师提问:“这样明白、浅显、直观的数学命题为什么需要证明?”这个问题就是有关“培养学生理性思维的探宄点”。通过师生探宄讨论,使学生理解古希腊文明的价值,也给学生理解几何证明提供了人文思考。这也是数学教学中德育功能的体现。
例2:“方程概念”的教学。通常是把教材中方程的概念直接加以叙述:含有未知数的等式叫方程。然后,写出很多式子,看看是不是“方程”。这个定义其实没有科学价值,学生无需记住,也没有应用。为了设置探宄点,教师可以从“小明的爸爸今年42岁,比小明大30岁,问小明几岁”出发。
以上过程就是解方程。因此,方程是为了寻求未知数,在未知数和已知数之间建立的等式关系。可以让学生讨论哪一个定义更好。学生探索之后悟出:书上的方程定义,是外观的描述;而后者的定义则刻画了方程的深刻本质。这样的探宄点设计,更能引发学生的创新思维。
例3:“勾股定理”的教学设计。最近看到许多“探宄性”的勾股定理教学设计,都把重点放在事先的发现上。学生拿到多张工作单,从最简单的边长为3、4、5的直角三角形开始,直到最后“探宄”
原因是“发现”定理的教学成本太高。如果采用其他探宄设计,如一开始就用多媒体技术介绍勾股定理的历史,直接呈现漂亮的“勾股定理”本身,而把探宄重点放在“证明”勾股定理上,就会节约时间,更接近论证教学需要。可将探宄重点放在以下三种证明方法的比较:面积拼凑法(出入相补原理),面积计算法(赵爽),补助线演绎证明法(古希腊)。这样的探宄设计,具有更多的数学价值。
例4:“对数性质”的教学。通常我们总是从指数的逆运算引入对数,然后指出对数的性质是把数的乘法变换成加法,这当然是对的。但仍然是这些内容,我们却可以以更高的数学思想方法进行设计,
这是指数函数构成的对应关系。现在,我们把箭头反过去,它也是一个对应,即函数。那么这个^函数具有什么性质?这样提出问题,就首先考查函^数应有的性质,然后给它一个名称一对数。实际^
上,这样设计并没有增加学生的额外负担,内容还是原来的内容,教学时间依然和原来一样,但是具有探宄的味道,这就是可以日常使用的创新点。
例5:“负负得正”的算法规定。这是有理数四则运算的一项重要规定。它无法证明,又没有世人^-33所公认的好例子可以作为规则成立的背景。近来教科书使用的方法,是用实际例子创设情景(例如设定火车向东为正,时间以12时以后为正,然后硬编出一个大家都不熟悉的怪问题),企图让学生“发现”负负得正的规则。实际的教学结果只是把学生搞得头脑混乱,浪费时间。
我们不要让学生去“发现”负负得正的规律,
因为那是短时间内发现不了的。世界上还没有发现一个为大家普遍接受的“负负得正”的实际情景。
因此,我们不得不采用接受性的教学策略,即直接告诉学生:“根据前人的经验,负负得正是一个大家都认为应该遵循的规则。”这节课的教学目的在于:
能够熟练操作、准确执行“负负得正”的规则。至于这个规则的来龙去脉,不必深究,一般学生只要接受“负负得正”不抵触就行。
那么,这一内容的探究点在哪里呢?一种教学设计是:“大家给它作解释,而每人可以不一样。”以下是大家探究的各种解释。
第一种解释:某数乘以_1得到它的相反数,再乘-1又返回到自身,所以-1乘以-1等于+1。这就是负负得正。
第二种解释:满足分配律。例如按照分配律,应该有:
这些解释都不是证明,也没有好坏之分,只要学生能够说服自己就行。实际上,学生掌握“负负得正”的运算规律之后,就把这些解释忘掉了。
从以上例子可以看出,探究创新点无处不在,基本类型有:
1.通过教师提问,为学生预留思考的空间,促进学生思维的开放。如本文所举的样例,又如一题_=多解,让学生尽量提供较多的不同解法。
2.通过教师创设情景,要求学生归纳猜想,建立数学模型,借助数学的各种呈现方式进行比较,得出新的结论。这是目前情景创设教学常用的。
3.通过教师示范,展示创新的过程;或者介绍数学家创造数学的历史,激励学生的创新动力。如例1“对顶角相等”的教学。
4.通过设置数学教学平台,让学生认识数学的教育形态,把书上的学术形态情景化,暴露它的数学实质。如例2“方程概念”的教学。
5.跳出“事事发现”的误区,把探究点放在“反思”求证阶段,如例3“勾股定理”的教学设计。
6.通过适当的问题,让学生总结数学思想方法,由感性的体验上升为理性的思考,理解数学的本原。如例4“对数的性质”教学。