首页 公文范文 数字经济及人工智能

数字经济及人工智能汇编(三篇)

发布时间:2023-09-26 08:32:26

绪论:一篇引人入胜的数字经济及人工智能,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

数字经济及人工智能

篇1

1数字技术助力传统农业转型升级

1.1物联网

物联网在农业生产环节适用较广,依据物联网的农业提升方案,通过实时采集并分析处理现场数据,实现提高农业生产效率、增加收益、减少损耗的目的。智能大棚、智能浇灌、精准农业等各种依靠物联网的应用将推进农业快速发展。物联网技术可以用来解决农业生产环节的一些问题,建设基于物联网的智慧农场,实现农作物产量和质量双提升。

1.2大数据

万物互联在促进众多设备联入的同时,还会在云端形成大量的数据,而提取这些通过物联网产生的大数据中隐藏的重要信息就必须依靠人工智能,物联网最重要的农业价值就是对形成的海量的数据进行智能化分析、处理,从而全面提升农业生产各环节的质量。

1.3人工智能

在种植方面,人工智能可以增加粮食产量、避免造成浪费。在养殖方面,依靠人工智能能够有效预防畜禽疾病的发生。人工智能能够缩短农业研发进程,帮助培育出更好的农作物基因,生产出更安全、更有效的化肥。

2中国数字农业面临的问题

2.1对软件重视不足

不管是政府还是农民都容易将数字农业与农业机械化的定义混淆,数字农业和农业机械化的本质差别在于,农业机械化是依靠农机装备来替代人力作业,而数字农业是指依靠数据来控制机械,实现自动化作业和智能化调节,没有数据和软件来控制的物联网,本质上还是工具,与机械农业没有实质上的区别,掌握软件平台才能真正实现大数据、智慧农业和数字经济

2.2数据利用化不高

数据是数字农业的根本保证,当前政府同企业在数据采集上合作频繁,但是往往没有明确的利用化方向,缺少必须的数据运营手段,对采集数据的正确筛选、处理分析和建模应用等领域的工作跟进不够及时,数据的采集与利用是一个相互促进的关系,只有不断通过采集的数据产生农业价值,才会形成长期有效的数据来源渠道。

2.3数字经济发展不足

目前我国农业电商的模式是通过数字来驱动市场经济,但这种方式在市场推广营运、产品特性突出、物流运输等方面有很多明显的缺点,如果农业电商的经营方式以数据为基础,利用市场资本来反向驱动农业数字经济,一些问题的处理就变得简单许多。我国数字农业技术的利用基本上都是在农业生产阶段,数字农业的信息化和经济化水平不高,数字经济创新突破的同时,也将带动“全产业链”的农业大数据快速提升[2]。

2.4数据服务产品化不强

随着数字农业的发展,农业数据服务企业越来越多,但数据产品的服务能力完全依靠于所采集的数据质量,一些企业对农业生产经营主体的服务水平不足,导致产品市场化受阻,只有通过持续积累高价值的数据,不断增强数据产品的实用性,让数据产品具有强大的生命力,才能开拓巨大的农业数字化市场。

3未来数字农业的发展趋势

3.1数据定制化供应

数据资源是数字农业发展的根本保证,当前我国数字农业具有数据采集费用较高的问题,随着数字农业优势的显现,数据采集的组织成本会慢慢下降,同时农业物联网持续升级换代、公共数据的利用不断开源、数据分析者的信息化水平逐渐增强,数据采集的综合成本也逐渐减少。今后农业数据服务企业将会逐步建立起自己的定制化数据供应系统,并且数据库里以往采集的高价值数据信息,将会随着企业的数字化服务能力提升而持续汇入到产业链中,通过交换、融合或再生来创造更多的价值,实现数据服务的数字化驱动。

3.2国产数据模型得到发展

实现数据价值是数字农业最困难,也是最终的根本目标,硬件设施可以从国外买到,但对于后台系统国外却对我国严防死守,所以必须掌握实现数据价值模型的核心技术。目前国与国之间的科技力量竞争不断加剧,引进科技成果的壁垒持续增高,同时国内外农业生产经营模式存在很大差别,因此不能直接套用国外的数据模型。我国不断鼓励科研成果的转化利用,农业数据模型的跨界合作正在逐步深入,所以农业核心数据模型的自主研发在今后一定会实现。

3.3农业机械智能化加快

农业机械化与农业智能化最根本的区别就在于“数据驱动”,“中国制造2025”明确要把“智能制造”作为今后的努力方向。顺应时展,海尔等一些国内的制造企业已经逐步进行数字化转型升级,从而获得新的经济增长点,农机企业也必须通过数据来对农机装备赋能,适应数字农业的发展要求,完成从农机制造商向农机服务商的转型升级目标[3]。

3.4产业链向虚拟化方向发展

由于农业生产各环节数字化水平的逐渐提高,数字化驱动的农机智能与商业智能同农业生产经营联系越来越紧密,数字农业产业链将慢慢走进网络世界中,通过互联网进一步实现农业数字化的映射,数字农业产业链虚拟化会慢慢消除农业信息不对称,提高产业整体效率,促进数字农业更好更快的发展。

3.5供应链金融普惠化

近年来,供应链金融高速提升,2020年我国供应链金融的市场规模已达到14.98万亿元,供应链金融是农业产业提升的重要环节,可以改善资金流从而促进农业产业、尤其是中小型企业的良好发展。依靠物联网、大数据及人智能等一系列科技手段,数字农业会进一步促进中小企业逐渐融入到农业产业体系中,为供应链金融普惠化打下良好的发展基础。农业产业虚拟化的同时,会使其变得更加透明,信用责任也更容易得到保证,因此金融风险的量化管理也变得不再复杂。

3.6数据安全更加重视

不管是地块的信息数据,还是企业的经营数据都能直接表现出农业生产经营主体或企业的当前情况,数据促进农业发展的同时,也有被泄露和乱用的风险,所以保证数据安全也是农业数字化发展不可忽视的问题,存储和使用数据的信息化系统的安全性要求越来越高,数据所有权的保证也会随着法律的不断优化而彻底解决。

4数字农业的发展领域

4.1智能农机装备

智能农机装备是农业生产的重要工具,通过物联网和信息化技术可以达到最优的农业实施方案,从农作物耕种收等各个环节来降低农业成本,实现农产品增产增收,从规模化种植角度,能够实现农业资源可持续发展,农业生态良性循环[4]。

4.2智能灌溉

提高浇灌效率和避免水资源浪费是农业良好发展的根本要求,可以依靠建设可持续和高效节本的智能灌溉系统来达到节约水资源的目的。目前以物联网为基础的智能灌溉系统,可以利用空气湿度、土壤湿度、土壤温度和光照度等参数进行精准的计算,从而根据用水需求来进行智能化控制灌溉,大大提高效率且降低成本。

4.3农业无人机

无人机在农业领域具有广泛的应用,可以用来进行农作物生长情况检测、农业摄影、农作物植保和牲畜管理等。农业无人机可以提高监测效率、降低监测成本,同时还可以采集大量的数据传输至后台。

4.4智能温室

智能温室可以连续不间断地测量温室内的各项环境数据,包括室内温度、室内湿度、光照度和土壤湿度等,当这些重要的参数超出设定的正常范围时,系统会对这些参数进行分析和评估,并做出自动响应,将这些参数的误差进行校正,从而使温室的环境保持在农作物生长的最佳范围内,极大地降低了人力和物力成本。

4.5收获监测

收获监测不只是针对农作物产量这一个指标,而是对收获环节所有可能影响最终收获量的因素进行监测,包括粮食含水量、粮食饱满度、粮食破碎量和总收获量等。对在收获监测中获得的实时数据进行有效的分析处理,可以辅助农民做出正确的决断,从而降低成本,增加产量。

4.6土壤监测系统

土壤监测系统主要用来监测和改良土壤综合性能,避免土壤退化,此系统可以监测土壤的大部分重要参数(包括土壤紧实度、蓄水保墒能力、土壤温度等),从而防止土壤板结、土壤侵蚀等。

4.7农业管理系统

农业管理系统可以为农业工作者和相关企业提供数据收集和管理功能。得到的数据被存储和分析从而为使用者提供决策依据,农业管理系统还可以用来建立农业数据模型。其优势包括为使用者作出重要决策时提供了理论数据支持,提高了农业生产的综合管理能力。

5互联网巨头布局数字农业案例

5.1阿里巴巴:盒马村

阿里巴巴数字农业事业部始终将农业全产业链数字化转型升级作为战略目标,力争尽快建成1000个高效规模化的数字农业示范基地。从去年开始,阿里巴巴数字农业事业部更是全面加紧了对盒马村的布局和建设,以希望先于其它企业完成数字农业示范基地建设的战略任务。盒马村并不是指某一个村落,而是所有为盒马种植农产品的村落的统称,盒马村模式是新时代农村转型升级的一个标杆,根据订单情况,针对不同的村落,因地制宜地发展数字农业,让种植户和销售企业直接对接,从而使优质的农产品快速入城,同时将城里的优质资本引进村落,形成良性循环。通过阿里巴巴建设的“产—供—销”一体化平台,让原本分散孤立的村落紧密联系在一起,成为现代数字农业产业链的一部分,种出更优质的农产品,让农民获得更大的收益。依托阿里云技术和淘宝电商平台,盒马模式帮助农业产业的种植端和销售端实现了数字化的升级,盒马利用其强大的销售汇聚能力,解决了小农户难销售的问题,改变了以往小农生产模式产销散乱的面貌,帮助农户降低了风险,开拓了销售渠道,提高了销售效率。据有关新闻报道,截至2020年底,上海、江苏、海南等全国13个省、市、自治区已经建立盒马村,盒马村模式为我国数字农业发展提供了良好的参考。

5.2京东:京东农场

从2018年开始,京东农场便逐步进行数字化农业的试验,京东农场广泛同全国各地的高标准农场开展合作,共同建立更高品质的农业生产基地,全面实行农作物标准化和规范化种植,从源头开始建立农作物全程可视化追溯性模式,让农作物从田间到餐桌的安全性得到保证,全面提升京东农场的农产品质量。其建立的“京品源”品牌,拥有产销一体化的全套服务体系,对京东农场的农产品在品牌、品质、供应、产销等方面进行全面的支撑。根据有关新闻报道,京东农场进行了广泛的战略布局,截至2020年底,其已经在全国各地建立了17个示范农场。从农产品的种植、加工、运输,到供销的各个阶段,京东农场利用区块链、人工智能、物联网等技术对传统农业进行赋能,彻底改变了传统农业的产销模式,为数字农业发展作出了重要贡献。

5.3华为:联手北大荒,助力数字化转型

篇2

作者简介

余来文,江西财经大学应用经济学博士后、博士生导师、创业导师、野文投资董事长、文字传媒董事长,《商业智慧评论》和《创业管理评论》出品人,并任江西财经大学、江西师范大学、江西理工大学、香港公开大学、澳门城市大学、亚洲城市大学等外聘MBA课程教授或创业导师。曾在海王集团、远望谷股份、飞尚集团等公司工作,历任副总经理、总经理等职务,为大洁王集团、南华西集团、铜川矿务局、陕西煤业集团等公司提供管理咨询。先后在《管理科学》《北大商业评论》《销售与管理》《中国经营报》《CHINA DAILY》以及人大报刊复印资料转载等杂志报纸200余篇。出版《智能革命:人工智能、万物互联与数据应用》《分享经济:网红、社群与共享》《共享经济:下一个风口》《互联网:商业模式颠覆与重塑》《商业模式创新》《互联网思维2.0:物联网、云计算与大数据》《企业商业模式:互联网思维的颠覆与重塑》等30多本图书。林晓伟,江西财经大学管理学博士,现为闽南师范大学商学院副教授,福建省“新世纪”人才。先后在《系统管理学报》《经济管理》《国际贸易》《当代财经》《中国社会科学报》《中央财经大学学报》《现代管理科学》等国内核心刊物20余篇,出版专著1部,参与编写《智能时代:人工智能、超级计算与网络安全》《电子商务:分享、跨界与电商的融合》《互联网思维2.0:物联网、云计算与大数据》《企业商业模式运营与管理》《物流学》《财务管理》和《会计学》等图书。主持福建省级课题4项,先后参与国家自然科学基金项目等省部级以上课题9项,参与诏安县农业和扶贫“十三五”规划编制工作。主要研究方向为物流与供应链管理、产业互联网、企业商业模式。

1 第1章 智能时代

2 开章案例

6 1.1开启智能时代

7 1.1.1 Mr Smart——我的智能生活

13 1.1.2智能时代之认知颠覆

18 1.1.3人工智能——工作“终结者”

19 1.1.4新产业的催生——“智”家帮的兴起

25 1.2迎接崭新的智能社会

25 1.2.1“数字化”——智能社会的“快引擎”

26 1.2.2“信息化”——智能社会的“大动脉”

27 1.2.3“网络化”——智能社会的“高速路”

28 1.2.4“集成化”——智能社会的“点金石”

29 1.2.5“公共化”——智能社会的“新时代”

32 1.3智能生态——智能时代的终极奥义

32 1.3.1传统工业逻辑的颠覆式创新

36 1.3.2人人创造,智能时代新分子

37 1.3.3用户“双力”:参与力创造力

38 1.3.4“智”之大器之智能整合

39 1.3.5未来人工智能生态圈

42 1.4智能时代的内核

42 1.4.1人工智能之先发“智”人

45 1.4.2超级计算之千手“算”音

46 1.4.3云端服务之无上“云”法

47 1.4.4网络安全之“安全”卫士

51 章末案例

56 第2章 人工智能

57 开章案例

62 2.1人工智能:让机器更聪明

62 2.1.1人机大战:阿尔法狗与柯洁

64 2.1.2人工智能与智能机器人

67 2.1.3机械思维向左,智能思维向右

68 2.1.4人机融合:超人类智能时代

72 2.2人工智能新认知

75 2.2.1解密人工智能

76 2.2.2重要的是数据,而非程序

77 2.2.3淘汰的不仅是工作,更是技能

80 2.2.4超人工智能时代

82 2.3大数据与人工智能

82 2.3.1数据驱动智能革命

85 2.3.2数据挖掘:从大数据中找规律

86 2.3.3大数据的本质:数据化

89 2.3.4大数据——人工智能的永恒动力

90 2.4人机融合:连接未来

93 2.4.1人工智能之“星际迷航”

95 2.4.2机器学习与人工神经网络

96 2.4.3超越未来:人工智能之深度学习

101 2.4.4 人工智能之前世今生

102 2.4.5 人机融合:未来ING

104 章末案例

109 第3章 超级计算

110 开章案例

114 3.1大话超级计算机

114 3.1.1 超级计算知多少

115 3.1.2 从数据到超级计算的飞跃

117 3.1.3 大千世界,“数”在掌握

119 3.1.4 数据流——“超算流体”

122 3.2时代新宠——超级计算机

123 3.2.1 超级计算,未来国之重器

124 3.2.2 超算之不得不懂

126 3.2.3 大国超算之超常发展

132 3.3超级管理

132 3.3.1 数据收集——“超管”之“核基础”

132 3.3.2 数据存储——“超管”之“核聚变”

133 3.3.3 数据处理——“超管”之“核爆炸”

136 3.3.4 超级计算安全

137 3.4表演时间:超算之应用舞台

137 3.4.1 互联网应用:“互联”的二次方

140 3.4.2 电子政务应用:政务“超算”跨时代

141 3.4.3 精准医疗应用:超算医疗,快,准,狠

145 3.4.4 智能交通应用:数据出行,悠哉,享哉

146 3.4.5 金融投资应用:“超算”致富经

149 3.4.6 新零售应用:“超”未来,“算”零售

153 章末案例

159 第4章 云端服务

160 开章案例

164 4.1云服务——“云”上境界

164 4.1.1 走进“云”化时代

168 4.1.2 享受云生活

172 4.1.3 幕后英雄——云计算推动“团队”

173 4.2直击云计算

174 4.2.1 云计算为何物

178 4.2.2 云计算从哪里来

179 4.2.3 虚拟化,一切皆有可能

181 4.2.4 云计算未来规模

183 4.3双重界:云计算与虚拟网络

183 4.3.1 云计算与虚拟网络关系

184 4.3.2 云服务之“虚化”技术

189 4.3.3 虚拟服务器——“虚化”技术承载终端

193 4.3.4 多云大融通——云存储设备

195 4.3.5 有备无患——云资源备份

198 4.4“三云”家族:公有云私有云混合云

199 4.4.1 公有云——“云”家必争之地

201 4.4.2 私有云——私享“云端”之上

203 4.4.3 混合云:公私合并——“云端”最强音

207 4.5云应用——“云端”的机智强大

207 4.5.1 云应用:极致“云”风暴

210 4.5.2 云应用、云服务与云计算

211 4.5.3 AI云运用=“云端”最强音

212 章末案例

218 第5章 网络安全

219 开章案例

223 5.1直击网络安全

223 5.1.1 计算机安全——21世纪的重点“安全区”

224 5.1.2 网络安全:居安思危,严阵以待

227 5.1.3 安全攻击之“四面”埋伏

228 5.2不得不知的网络安全

229 5.2.1 网络安全之认知“大充电”

232 5.2.2 网络安全风险之危机四伏

236 5.2.3 网络安全的“威胁危邪”

241 5.2.4 安全管理“六板斧”

242 5.3网络“歪脑筋”:犯罪与黑客

243 5.3.1 网络犯罪——犯罪“新境界”

246 5.3.2 黑客攻击:高智商罪犯的攻击

247 5.3.3 黑客攻击“六”手段:智、快、狠

250 5.4无处不在的安全管家——网络安全管理

250 5.4.1 网络安全“密匙”:加密安全

254 5.4.2 保密系统:守口如瓶,从一而终

256 5.4.3 智能防火墙——安全防护之智能乾坤

260 5.4.4 网络安全未来式:量子通信

264 章末案例

篇3

Concur全球总裁Mike Eberhard表示:“中国代表着一个巨大的市场机遇,我们在这里已经为众多跨国企业的中国分支提供了差旅和费用管理服务。我们很期待未来能够在中国继续扩大业务,将Concur的优质服务传递给更多的中国企业。与中数通信息有限公司的合作,让我们能在云端为中国企业提供更加优质的服务,从而全面拓展中国市场。”

Mellanox创新网络支撑科大讯飞走向前台

Mellanox公司日前宣布科大讯飞已采用Mellanox端到端的25G和100G智能网络解决方案为其打造下一代机器学习研究中心。该解决方案基于Mellanox ConnectX系列网卡和Spectrum交换机,将助力科大讯飞的语音产品实现高达97%的语音识别率。

“Mellanox的互连解决方案帮助科大讯飞成功搭建了下一代的机器学习中心,这将进一步提升我们的应用性能,从容应对未来的各种需求和挑战”,科大讯飞公司研究院常务副院长王智国博士表示。“而且,基于Mellanox以太网解决方案的高可扩展性,我们能够以最高效的方式提升计算和存储能力,无中断地扩展服务器规模。”

采用Mellanox 25G和100G Spectrum开放式以太网交换机,科大讯飞成功构建了一套灵活、可扩展、易于管理的高性能体系结构。该机器学习系统可以轻松处理巨大的并发流量,并且能够支持不可预测的业务增长。Mellanox尖端智能网络解决方案不仅为其提升了数据通讯的带宽、极大的增加了数据的吞吐率,还能提供自动化的网络配置和管理;支持 QoS 、RoCE v2和 TCP/IP 的融合网络。此外,该超大规模网络架构具有极高的可扩展性,可通过BGP实现全互连,提供8路/16路等价多路负载均衡(8/16 ECMP)。

基于Mellanox Spectrum交换机leaf-spine架构的网络拓扑结构解决了横向网络连接的传输瓶颈,而且提供了高度的扩展性,它几乎能适应所有大中小型数据中心。可以预见,所有企业的IT建设都是走向收敛型和高层次的虚拟化型叶脊网络结构,Mellanox将是广大行业用户构建现代数据中网络基础架构的最佳选择。

AI ON IA,英特尔加速人工智能创新和发展

2016 年 11月 30日,主题为“释放IA原力 拥抱AI时代”的英特尔人工智能论坛在北京召开。英特尔公司副总裁、数据中心事业部数据中心解决方案部门总经理Jason Waxman表示,“人工智能将变革企业业务运营方式以及人类与世界的交互方式。作为一家助力云计算,以及数十亿智能互联计算设备的公司,英特尔正继续转型以聚焦已经崛起的良性循环――云和数据中心、物联网、内存和FPGA等加速器,它们紧密联系在一起并通过摩尔定律而进一步增强――从而加速人工智能创新及其在企业和社会中的应用和普及。”

英特尔为人工智能提供全面的、极为灵活的端到端解决方案产品组合:构建于业界领先的基于英特尔架构的涵盖至强处理器、至强融核处理器、Nervana平台和FPGA、Omni-Path网络、3D XPoint存储等技术的硬件平台,结合英特尔针对深度学习/机器学习而优化的英特尔数学函数库(Intel MKL)、英特尔数据分析加速库Intel DAAL)等,和致力于为多节点架构提供卓越性能的开源软件框架如Spark、Caffe、Theano以及Neon等,及可推动前后端协同人工智能发展布局的Saffron、TAP、Nervana 系统、Movidius等工具和平台。同时,为推动人工智能战略的实施,加速相关技术的大众化并最终实现应用的普及,英特尔还积极建立与包括谷歌等业界领先公司在内的广泛的联盟,成立英特尔Nervana人工智能委员会等推动技术探索和创新,与全球领先机构合作提供开发者培训课程,从而构建涉及人工智能技术提升、教育培训、应用优化等广泛的生态。

国内首个网络直播行业景气指数

12月6日,中国信通院政策与经济研究所联合网宿科技共同首个网络直播行业景气指数,从直播带宽、观众活跃度、主播活跃度等多个层面构建了我国网络直播行业景气度的监测系统。数据显示,前三季度,中国网络直播景气指数持续上行,三季度网络直播景气指数环比二季度增长59.06%,网络直播行业的景气度加速上扬。

指数报告显示,近一年多以来,直播行业经历了野蛮式的增长,直播平台早已突破200家。截止到今年6月底,网络直播用户的规模已经达到了3.25亿,占网民总数的45.8%,并且这个规模仍在持续上涨。直播已经成为2016年互联网领域最为热门的现象级应用。安信证券通信行业首席分析师李伟表示,直播+的未来前景十分广阔,现在无论是直播+各种业态,还是原有BAT阵营或者其他业态,加速嵌入直播功能,都是在抢夺流量的入口,预计明年关于直播入口的争夺将更趋激烈。

认知计算助力神思电子转型升级

近日,IBM与神思电子在济南隆重举行签约仪式,宣布双方达成合作协议。IBM将为神思提供一站式的业务解决方案和技术支持服务,运用认知计算和应用能力帮助其展开由从智能识别到认知行业解决方案,由行业深耕到行业贯通的转型升级。神思电子作为IBM重要的合作伙伴,将与IBM一道为其服务的行业客户打造基于认知计算、物联网和大数据等技术的解决方案。在合作的第一阶段,神思计划利用IBM Watson Explorer和IBM Watson IoT Platform上的SaaS产品打造国内领先的商业服务机器人和个性化的认知行业智能解决方案,并有望首先应用于医疗、金融等领域。济南市市委常委、副市长苏树伟,神思电子董事长王继春以及IBM副总裁兼大中华区认知解决方案总经理Robert Josef Simmeth等领导出席并见证了签约仪式。

神思电子希望依托多方位的智能识别和行业应用技术,以及在移动互联、免签免密小额支付、数据挖掘等领域积淀多年的行业经验,并结合IBM在认知计算、物联网和大数据等技术领域的领先优势,在移动商业、便捷支付、银医自助等应用领域继续深耕,为现有客户提供‘认知+’的行业解决方案。

数字化举措促进中国大陆企业业务表现提升

CA Technologies近日公布了一项名为《保持得分:数字化转型为何如此重要?》的调查显示了经营业绩与支撑数字化转型的技术实践之间具有紧密联系。

该项调查采用了“数字化转型业务影响计分卡”(BIS),涉及业务敏捷性、业务增长、以客户为中心和运营效率四个类别。总体来看,中国大陆企业数字化举措的影响力得分为50分,在世界范围内排名居中。在亚太及日本地区,敏捷管理、DevOps、API管理和以身份为中心的安全性等数字化实践被广泛采用,使业务影响力提升高达54%。有33%的中国大陆企业认为对数字化方面的投资有助于企业明显超越竞争对手。

在该项调查中,中国大陆企业受访者表示数字化转型为其带来以下效益:85%扩大了数字化覆盖范围、82%提升了用户体验、34%提高了客户满意度、33%加速了上市速度、29%增加了新业务收入、27%缩短了决策时间。

亚太及日本地区的一些发展中国家在BIS中表现强劲,领跑全球榜单,其中包括印度(79分)、泰国(71分)、印度尼西亚(66分)和马来西亚(64分)。中国大陆(50分)在此次评估中位居第六名的中间位置。调查指出,新兴经济体相较于成熟的传统经济体更具有发展潜力,也更易于进行数字化转型,这是因为新型经济如“白纸”一般的特质使其可以避免受到旧系统的束缚。

友情链接