发布时间:2023-10-13 15:38:02
绪论:一篇引人入胜的高效节能灌溉,需要建立在充分的资料搜集和文献研究之上。搜杂志网为您汇编了三篇范文,供您参考和学习。

1.土壤和播种情况
膜下滴灌棉花栽培示范地选择在疏附县站敏乡17村2组31个农户地,条田面积750亩,土壤为壤土,肥力中等。棉花播种时间于4月20-25日,播种行距为30cm-50cm-30 cm- 60cm,株距9.5cm,理论株数18275株/亩,棉花品种为中棉43号。
2.设计说明
2.1滴灌管选用以水利局提供的滴灌管,内径16mm,壁厚0.63mm,滴头流量1.3L/h,滴头间距0.4m。滴灌管铺设间距1.52m,埋于地下0.35m处。
2.2各灌溉示范区面积设计为6个轮灌组,12个轮灌小区,每个轮灌组设计流量73.4m3/h。
3.滴水与施肥
膜下滴灌棉花栽培试验区,在棉花全生育期共滴水7次,共计用水3003/hm2,6月15日开始第一次滴水,之后根据棉田小气候和棉花的生育特点、需水量和时段,每间隔8天滴水一次,每次滴水35-40/hm2,以满足棉花各个生育期对水分的需求。8月20日停水,有利于棉花早熟而不早衰,增加铃重,提高衣分。棉花全生育期随水滴施尿素3次,共施肥75公斤/亩。
4.化调化控
化调化控时根据长势情况,坚持“早、轻、勤、”的原则,避免“一棍子打死”。 弱苗在2-3叶期,每667平方米用磷酸二氢钾100克+尿素150克对水30千克叶面喷洒。在2-3叶期,每667平方米用缩节胺0.5克左右,以促根、壮苗、促早蕾的形成。在3-5叶期,每667平方米用缩节胺1克左右,头水前,每667平方米用缩节胺2-3克对水30千克叶面喷洒,主要控制中下部主茎节间和下部果枝伸长,打顶后4-5天,每667平方米用缩节胺5-6克对水30千克叶面喷洒,主要控制上部主茎节间和上部果枝伸长。
打顶:严格坚持枝到不等时、时到不等枝的打顶原则,在7中下旬彻底完成了打顶工作。
5.其他田管措施
棉田其他管理上我们突出了一个早字,即早除草、早中耕。同时,加强病虫害调查和测报工作,坚持综合防治。田边地头冬季进行了铲草除蛹,播种后田边地头摆放糖浆诱杀飞蛾。棉花生长阶段保护天敌,棉叶螨、棉蚜发生时,基本上没有使用杀虫剂。
二、灌溉水量
1.膜下滴灌灌水器(毛管)埋在耕作层以下,灌水均匀,并且都集中在棉花根系30-40cm周围,不会产生地表径流,也降低了棵间蒸发损失。
2.生育期变化
膜下滴灌棉花可以看出,出苗、显蕾期时间基本一致,灌水后在现蕾-开花期之间,膜下滴灌比沟灌棉花晚2天;花铃-吐絮期之间,膜下滴灌比沟灌棉花早5天,吐絮盛期早4天,全生育期提前5天。这样,膜下滴灌方式有利于棉花早结铃、吐絮,生长期提前。
膜下滴灌生育期记载记录:
播种期(4月20日)、出苗期(5月1-5日)、显蕾期(5月20日)、现蕾期(5月25日)、开花期(6月22日)、花铃期(6月25日)、铃期(7月1日)、吐絮期(8月20日)、吐絮盛期(9月5日)
生育期125天、全生育期150天。
三、产量结果
根据实际测产结果如下:亩有效株数11100株,单株铃数5.6个,单铃重6克,衣分42%。
籽棉=亩有效株数×单株铃数×单铃重;
籽棉=11100株×5.6个×6克
亩籽棉理论为373.1公斤。 实际产量(85%)为317.1公斤。
皮面=亩有效株数×单株铃数×单铃重×42%(衣分)
亩皮面为133.2公斤。
四、效益分析
棉花膜下滴灌节水技术,主要的运用方式是,在地膜底下铺排滴灌管道,然后将覆膜植棉和滴灌的技术相融合,从而达到更为经济节省和高效的灌溉目的。它也是地膜栽培抗旱技术的再创造和发展。棉花根系吸收水分的过程一般先是接受加压水的过滤,然后再通过支管、毛管和干管的疏导,经由毛管上的滴水器来完成对棉花根层土壤的灌溉。同时,膜下滴灌技术是地膜栽培技术和滴灌技术的有效延伸和拓展,一般将化肥农药和水经由可控管道来融合,按质按量地完成对农作物根部的灌溉,从而使得农作物根部的土壤以及水源都十分充足,进而有力地促进了其生长和发育。
草莓空中立体无土栽培技术模式主要采用吊挂的方式,其主要优点在于能充分利用温室空间与太阳能,空气流通,便于操作与管理,而且能轻松调节栽培槽坡度,易于灌溉液的回流;缺点是需要温室承重,栽培介质较轻,灌溉管理需要精细化。从操作形式又可分为固定吊挂式立体栽培模式与电动可升降吊挂式立体栽培模式。
草莓固定吊挂式立体栽培
固定吊挂式立体栽培模式一般采用钢丝绳吊挂栽培容器的方式(图1、图2)。吊挂高度控制在1.2~1.6 m,间距为50~70 cm,栽培槽宽为20 cm,栽培采用S型单排栽培方式,株距为10 cm,定植密度约为7400株/667m2。栽培容器主要采用槽式、管道式以及盆式,其中生产中以槽式居多;在基质选择方面,为了考虑承重,一般选择质地较轻的草炭土、椰糠、岩棉等;在灌溉施肥方面一般采用滴灌的方式,营养液大多为循环方式; 吊挂的模式在植株间布置加温管道与补光灯较为方便,空气流通也有利于病虫害的防治,因此采用该模式进行生产易获得较高的产量。
草莓电动可升降吊挂式立体栽培
该种生产模式主要是升级版的吊挂式立体栽培模式,在吊挂式立体栽培模式的优点上,更加有效地提高了草莓光照效率(图3)。在固定式的吊挂中,草莓植株处于同一个平面,不同区域草莓早晨与晚上接受的光照有所不同,而采用电动可升降吊挂式立体栽培方式,不同栽培槽的高度都可以控制,可使栽培槽在太阳辐射方向形成上升梯度,因此每槽的草莓都能接受较好的光照,而且电动式的栽培槽可升降更有利于人工生产操作。另外,在实际生产中,一般栽培槽下设置有防渗膜或者渗液槽,或者仅使用双层营养液模式栽培,以便于营养液的灌溉回收。电动可升降吊挂式立体栽培模式下的草莓生产管理与环境控制同固定吊挂模式。
地面立体无土栽培技术模式
草莓地面立体无土栽培技术模式主要采用支架型的方式,其主要优点是能将草莓栽培架提升到一定高度,便于操作与生产管理。地面立体式相比于空中吊挂式更为灵活,适用于基质培、水培、袋培、管道培等模式,也不需要考虑温室类型与承重。目前,地面立体无土栽培大致可分为平面支架式栽培、立体多层支架式栽培,以及可调节式立体栽培。
平面支架式栽培
该模式主要通过各种类型的栽培架将草莓栽培空间提升一个层次,以便于生产操作与管理。目前,一般常见的架式有H型和X型,栽培架材料采用C型钢骨架或者镀锌钢管(图4、图5)。支架高度一般设置为1.2~1.5 m,宽度根据生产实际需要调节,大多为单排双行平行栽培的方式,支架间距为50~70 cm,株距为10~15 cm,定植密度约为6000~6500 株/667m2。平面支架式栽培除了使用槽式栽培容器,也有使用袋式栽培的;施肥灌溉一般采用滴灌的方式,可增加防渗膜回收营养液。还可以结合加温线进行根系加温。总体来说,这种栽培模式采用的材料简单通用、成本较低、使用寿命较长,植株生长在同一平面,比较整齐,方便作业与采收,产量也较为稳定。
立体支架式栽培
立体支架式栽培主要为多层支架式栽培,目的是充分利用种植空间,提高栽培密度,以期提高产量。目前,一般常见立体支架式栽培模式有H型双层及多层模式、A字型支架式栽培模式(图6、图7)。这几种支架材料多采用方钢或者镀锌钢管,支架高度设置为1.4~1.6 m,层数设计为2~4层,宽度和间距一般根据支架类型以及生产实际布置,此种方式的定植密度超过1万株/667m2。立体支架式栽培一般也使用槽式或者管式栽培容器,施肥灌溉一般采用滴灌的方式,这种方式也适用于草莓水培。总体来说,这种方式草莓产量较高,支架使用寿命长,但不同层次间的光照均匀度差,造成产量与品质不均衡。
可调节式草莓立体栽培
可调节式立体栽培模式是结合单层与多层栽培模式的优点,在不需要生产操作时,可通过调节使草莓架成为一个平面,布满整个温室。而在需要生产操作时,可使栽培架呈立体多层状,腾出生产过道,以便操作。这种模式即充分利用了温室空间,又可通过调节支架间角度使支架互不遮光,创造良好一致的光温环境。该栽培支架包括立柱、可调节支架、固定栽培槽、移动栽培槽等部分。其中,栽培槽固定在立柱上,距离地面1.2 m,移动栽培槽固接在可调节支架的竖杆上部(图8)。其草莓生产管理方式同平面支架式栽培模式。
草莓高效节能栽培模式
近年来,越来越多的工业与智能科技成果应用到了草莓生产中,大大提高了草莓生产效率,同时也降低了草莓生产的能耗。目前,高效节能主要在减少能耗、水肥高效利用、环境智能控制等方面,其栽培模式有草莓蓄热式高架栽培、“干雾培”栽培、复合栽培、植物工厂式栽培等。
草莓蓄热式高架栽培
蓄热式草莓立体栽培系统主要由栽培架、蓄热水槽、水肥灌溉系统、CO2施肥系统与热泵构成(图9、图10)。白天温室多余的热能被蓄热水槽所吸收,通过热泵工作来降低温室内的温度;晚上释放蓄热槽内水的热能,从而达到温度加温的效果,同时通过热泵工作来提高温室内的温度。这种栽培模式可采用单层定植,也可采用多层定植,通过提高单株草莓产量来提高整体产量。据日本Seiwa公司试验,这种栽培模式下的年产量可达到4500 kg/667m2,节能40%以上,同时高架的生产方式便于生产管理、病虫害较少。
“干雾培”栽培
草莓干雾培栽培模式主要原理是将含有营养液的液体肥料通过特殊的喷头制成0.01 mm大小的微粒烟状干雾,对作物根部进行施肥(图11),为日本株式会社H.Ikeuchi研发。这种模式的优点在于能显著促进草莓作物根毛的生长,草莓能充分吸收水份与肥料,极大幅度地提高了草莓的水肥利用效率,提高草莓果实的糖度,其缺点是对喷头和设备以及水肥纯净度的要求很高,在生产中推广可能还需要一段时间。
草莓基质培与水培复合栽培
草莓基质培与水培复合栽培模式主要为结合基质栽培与水培的优点,将草莓苗定植在装有基质的营养钵里,通过定植板支撑使得草莓新长出根系生长于水培槽内,水培槽内还可以放置基质袋用于固定根系,也可以仅用纯水培方式(图12),在西班牙和中国都有应用。此种方式的优点是可以在密闭的水培槽内形成保温、保湿、黑暗的环境,水肥的均衡供应,闭式的营养液循环系统不产生废液,极大地提高了水肥利用效率。而且草莓苗拉秧与定植非常便捷。
草莓植物工厂栽培模式
植物工厂是近年来发展比较快的不受自然条件制约的省力型生产方式,已成为农业生产的前沿与趋势。植物工厂虽然在叶菜生产中应用较多,但在草莓生产中也有应用报道,如日本日清纺控股公司成功实现了植物工厂内草莓的量产。植物工厂内一般采用水培的生产方式,种植一季型或者四季型草莓,需通过各种环境因子的精确控制,能实现草莓的周年供应。但一般植物工厂投资较大、运行费用也较大,要充分考虑地区的消费水平才能创造效益。
草莓观光型栽培模式
农业休闲观光采摘是近年来比较流行、发展迅速的一个产业,尤其对于草莓这种香甜可口的浆果类产品,受到广泛青睐。在草莓观光型栽培模式中,除了上面介绍的生产模式可应用外,还有许多造型式栽培方式,主要包括利用PVC管道、异型泡沫栽培容器以及在其他固定造型中种植草莓等。
草莓管道吊柱式栽培
管道吊柱式栽培模式主要利用PVC管道材料通过粘合加工形成具有一定美观性的栽培柱来种植草莓(图13),一般主柱使用直径为160 mm或者更大的PVC管,栽培孔采用50 mm的PVC管,按观光需求均匀地粘合与定植在主管立柱上,主立柱采用吊挂的方式固定,一般主立柱管内填充基质或者无纺布,栽培管使用基质,施肥灌溉方式采用滴灌结合渗灌的方式,底部连有回液孔和回液管路。
草莓螺旋式立柱栽培
草莓螺旋式立柱栽培主要采用螺旋式的塑料或者泡沫栽培槽通过上下螺旋叠加的方式种植草莓(图14),该方式能兼顾生产与观光,多采用基质滴灌种植的方式,也可采用水培方式。一般采用镀锌钢管的固定方式,螺旋柱下方常设有回液槽。
草莓回流管道栽培
草莓回流管道栽培模式原理同上面的复合栽培模式,其优点是能打造各式各样的造型,所以多用于观光栽培中。此种方式是回流管道设计的一种比较常见模式,在实际生产中可根据需要使用各种规格的PVC管道粘合成不同大小与规格的栽培造型。这种栽培模式一般分为储液桶、栽培与供回液管路、供液泵3个部分(图15)。
草莓金字塔式雾培模式
草莓金字塔式雾培模式主要是使用雾培栽培模式来种植草莓,其结构主要包括储液桶、定植板、雾培供液系统。此种模式优点也是能打造各种栽培造型,如金字塔型(图16),就是一种比较美观与常见的形状,其他的还有梯形、柱形等。该模式的优点是节水节肥、草莓定植方便,缺点是不能断电,对喷头要求较高。
结束语
草莓是一种兼顾食用与观赏的作物,所以对草莓的生产模式与设备的需求也不尽相同,本文大致总结了国内外13种草莓栽培的主要模式,另外也有其他种不同的生产形式,但大多数原理与结构都与上述的模式类似,上述模式的总结与展示希望能够为不同类型草莓生产者提供选择,也希望通过上述模式的推广实践促进中国草莓种植业的蓬勃发展。
参考文献
[1]李邵,齐飞,尹义蕾,等.一种蓄热式草莓高架栽培装置:ZL201520146346.2[P].2015.
Abstract: With China's rapid development of industry, a number of ground source heat pump equipment Guangxi University invention patent and utility model patent, design software independent development of ground-source heat pump system. The "solar - ground source heat pump hot water equipment: has won the national utility model patent (Patent No.: ZL200320101152.8), which will enable the Guangxi renewable energy utilization technology has been updated and extended. And the architectural design with regional characteristics of the analysed thinking.
Key words: building energy efficiency design; improvement
中图分类号:TU201.5文献标识码:A 文章编号:
前 言
近几年,国家大力发展节能减排工作,太阳能产业得到了快速的发展,太阳能热水器产量和产值快速增长,生产量和使用里居世界首位。油气今年中国绿色奥运的大力推广,太阳能行业更是取得了突飞猛进的发展。另一方面,广西河流数量多,大多数城市(镇)临江而建,地表水丰富。广西雨水充足,地下水也相当丰富,全区有600多条地下河;绝大对数城镇地下水位较高,富山土壤比例大,为土壤换热式地源热泵系统应用提供了得天独厚的条件,一般富水土壤换热井20-30米,换热效果就很明显。因此,广西采用地源热泵供热制冷节能环保系统具有非常有利和广阔的条件。目前,广西大学已申请了多项地源热泵相关设备发明专利和实用新型专利,自主开发地源热泵系统设计软件一套。其中“太阳能-地源热泵空调热水设备:已经获得国家实用新型专利(专利号:ZL200320101152.8),这将使广西的可再生能源利用技术得到更新和推广。
1建筑的基本特征分析
生态型住宅的环境要有洁净的空气、水源与土壤,不受到不良自然环境的危害,也不易遭受自然灾害的侵袭,基本特征如下:
(1)建筑物要尽量保持和开辟绿地,在建筑物周围种植树木防风、遮荫,改善景观,保持生态平衡。重视室内空气质量,保持新风在室内的流动。重视人文景观的保护,建筑物附近有价值的古代文化或建筑遗址应予保留并予妥善安置。
(2)建筑物的资源、能源和其他消耗至最低程度。建筑物应该充分有效地使用水、能源、材料和其他资源。尽量利用清洁能源(如地热与太阳能、水能、生物能和风能),保护与改善自然环境。在满足人们的健康、舒适、安全使用的情况下降低消耗、节省资源。
(3)建筑物应有合理的朝向布局,以充分利用太阳能。建筑物的形体布置合理,应减小建筑物的体形系数,以减少采暖与制冷能耗,建筑物的围护结构应该采用高效保温隔热构造,并具有良好的自然采风系统以及充分的自然通风条件;建筑物内的房间设置、布局恰当,既满足使用舒适度,又节省能源。
(4)回收并重复使用资源。从旧有建筑物中拆除的建筑材料,如砖石、钢材、木料、板材和玻璃等,尽可能保护好,根据不同情况,力求回收利用,做到:
建筑材料——建筑——建筑材料——新建筑的良性循环。并积极利用其他工农业废弃物料。使用先进技术,降低建筑运行管理费用。在结构条件允许情况下尽量不要拆除旧建筑,应对其进行改造以适应新的使用功能,节省建筑造价。
2住宅区规划设计
建筑物布局不合理,会导致居住区局部气候恶化。当建筑师们在对建筑住宅区进行规划时,更为常见的做法是过多地把注意力集中在建筑平面的功能布置、美观设计及空间利用上,而很少考虑高层、高密度建筑群中气流流动情况对人的影响。事实上,良好的室外风环境,不仅意味着在冬季风速太大时不会在住区内出现人们举步维艰的情况,还应该在炎热夏季有利于室内自然通风。从这一点上来说,在规划设计中仅仅考虑对盛行风简单设置屏障的做法显然是不够的。同时,住宅区周围建筑的热环境不仅和气流流动有关,同时还和住宅区建筑周围的辐射系统有关。受住宅设计中建筑密度、建筑材料、建筑布局、绿地率和水景设施等因素的影响,住宅区室外气温有可能出现“热岛”现象。“热岛”现象在夏季的出现,不仅会使人们高温中暑的机率变大,同时还促使光化学烟雾的形成,加重污染,并增加建筑的空调能耗。合理地建筑设计和布局,选择高效美观的绿化形式及水景设置,可有效地降低热岛效应,获得清新宜人的室内外环境。
3 建筑物的内外环境控制系统设计
住宅区规划应有效地设计防噪系统,如将住宅区和主要交通干线相隔绝,防止主要交通干线的噪音传过来。污染控制问题也需重视,建筑物内部空气质量不好,一定是与室外空气污染有关,而通过有效的绿化、有效的组织建筑周围气流流动,可以改善室内空气品质。在设计初期,技术人员就应该深入现场进行调研和测试,检验当地的噪声或污染是否符合标准。如果不能满足要求,一定要采取相应的补救措施。在居室防噪设计中,可考虑采用错开设计的双层玻璃窗,既能有效降低噪声,又不影响自然通风的利用。
4节能措施及效果分析
4.1节能措施综述
优先考虑被动式策略(如自然采光、自然通风、围护结构隔热遮阳措施等)后,优化设计主动式策略、照明节能技术等),具体措施,通过合理总平面设计,利用夏季主导风,因地制宜布置绿化带,改善微气候;选用合适的建筑材料。提高建筑围护结构的隔热保温性能;选用高效节能的建筑设备、制定合理的运行和控制方式充分提高能源利用率;选用高效节能的灯具产品,充分利用自然光照明,优化照明控制的方式,减少照明能耗;使用智能系统,使系统经济运行,节约能耗。
4.2建筑节能措施
(1)整个建筑外墙采用干挂石材,表面光滑平整,有利于反射太阳辐射。南北两侧裙房均设置内庭院,有利于改善局部通风效果。主楼与裙房之间留有9米宽消防通道,有利于自然风的相互穿透。
(2)本工程绿化规划采用集中绿地布置和建筑周边环形绿化带布置相结合,整个地块的绿地率在30%。大面积的绿化带可以有效减少城市及展区室外气温逐渐升高和气候干燥情况,降低热岛效应,调节微气候。室外绿化物种注重选择适宜柳州:地区气候和土壤条件的乡土植物,且采用包含乔、灌木的复层绿化。
(3)室外公共活动场所地面以透水性铺装为主,利用透水砖、绿化带和水体吸纳水分,不仅可以降低暴雨时期的地面径流量,还可以利用水分的蒸发降低夏季地表温度,改善室外热环境质量。
4.3空调通风节能措施
(1) 本工程从建筑设计上考虑以自然通风采光为主,辅以机械通风换气设备和空气调节设备来维持室内舒适环境。
(2) 采用符合国家要求的节能设备及材料。空调通风设备采用节能省电、能效比高的产品,以利于节能。所有建筑均按节能设计标准设计。
(3) 空调水系统采用变流量系统,水泵均为变频水泵,按实际负荷进行调节,在部分负荷时通过水泵变频调节流量来最大限度降低能耗。
(4) 在室外气象条件较好的情况下,实行比例调节新/回风比直至全新风模式,减少冷水机组开机时间,降低运行能耗。
(5) 合理设置空调自控系统,对通风空调系统的运行模式进行优化,达到节能效果。
(6) 采用高效节能的保冷材料,减少输送过程的冷量损失。
(7) 分体式空调机组安放,与建筑专业密切配合,使室内机的位置满足室内良好的气流组织需求,使室外机拥有良好的通风换热环境,避免进风、排风气流相互干扰。
4.4节水技术措施